A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The fabrication of high contrast gratings as the parallel spectrum splitting dispersive element in a concentrated photovoltaic system is demonstrated. Fabrication processes including nanoimprint lithography, TiO2 sputtering and reactive ion etching are described. Reflectance measurement results are used to characterize the optical performance.
High contrast gratings are designed and fabricated and its application is proposed in a parallel spectrum splitting dispersive element that can improve the solar conversion efficiency of a concentrated photovoltaic system. The proposed system will also lower the solar cell cost in the concentrated photovoltaic system by replacing the expensive tandem solar cells with the cost-effective single junction solar cells. The structures and the parameters of high contrast gratings for the dispersive elements were numerically optimized. The large-area fabrication of high contrast gratings was experimentally demonstrated using nanoimprint lithography and dry etching. The quality of grating material and the performance of the fabricated device were both experimentally characterized. By analyzing the measurement results, the possible side effects from the fabrication processes are discussed and several methods that have the potential to improve the fabrication processes are proposed, which can help to increase the optical efficiency of the fabricated devices.
Our modern society will not survive without moving a significant portion of energy consumption to renewable energy sources. To make this happen, we have to find a way to harvest renewable energy at a cost lower than petroleum-based energy sources in the near future. Solar energy is the most abundant renewable energy on earth. Despite that a lot of progresses have been made in solar energy harvesting, it is still very challenging to compete with petroleum-based energy sources. Improving the efficiency of solar cells is one of the most efficient ways to lower the system cost of solar energy harvesting.
Optical lenses and dish reflectors are usually used in most concentrated photovoltaic (CPV) systems1 to achieve a high concentration of solar power incidence on the small-area solar cells, so it is economically viable to exploit expensive tandem multi-junction solar cells2 in CPV systems, and to maintain a reasonable cost at the same time. However, for most non-concentrated photovoltaic systems, which usually require a large-area installment of solar cells, the high-cost tandem solar cells cannot be incorporated, although they usually have a broader solar spectrum response and a higher overall conversion efficiency than the single junction solar cells3.
Recently, with the help of the parallel spectrum splitting optics (i.e. dispersive element), the parallel spectrum splitting photovoltaic technology4 has made it possible that a similar or better spectrum coverage and conversion efficiency can be achieved without using the expensive tandem solar cells. The solar spectrum can be split into different bands and each band can be absorbed and converted to electricity by the specialized single-junction solar cells. In this way, the expensive tandem solar cells in CPV systems can be replaced by a parallel distribution of single-junction solar cells without any compromise on the performance.
The dispersive element that was designed in this report can be applied in a reflective CPV system (which is based on dish reflectors) to realize parallel spectrum splitting for the improved solar-electricity conversion efficiency and reduced cost. Multilayer high contrast gratings (HCG)5 is used as the dispersive element by designing each layer of HCG to work as an optical band reflector. The structures and parameters of the dispersive element are numerically optimized. Moreover, the fabrication of high contrast gratings for the dispersive element by using dielectric (TiO2) sputtering, nanoimprint lithography6 and reactive ion etching is studied and demonstrated.
1. Prepare the Blank Polydimethylsiloxane (PDMS) Substrate for Nanoimprint Mold
2. Prepare the Nanoimprint Mold (Duplication from the Master Mold)
3. Nanoimprint Pattern Transfer
4. Cr Lift-off Process
5. TiO2 Deposition
6. High Contrast Grating Etching
7. Reflectance Measurement
Figure 1 shows the implementation of the dispersive element (multilayer high contrast grating (HCG)) in a concentrated photovoltaic system. The sun light is first reflected by the primary mirror and impinges on the reflective dispersive element, where the beam is reflected and split into different bands of different wavelengths. Each band will impinge on a certain location on the solar cell array for the best absorption and conversion to electricity. The key to this system is the design and implementatio...
First, the quality of the TiO2 film is very crucial for the HCG performance. The reflectance peak will be higher if the TiO2 film has less loss and surface roughness. The TiO2 film with a higher refractive index is also favorable because the optical mode confinement will be enhanced by a higher contrast in index, which can give rise to a flatter and broader reflectance band in HCG.
Second, the fabrication errors will have significant effects on the HCG and shou...
The authors have nothing to disclose.
This research was supported as part of the Center for Energy Nanoscience, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under Award Number DE-SC0001013. We also want to thank Dr. Max Zhang and Dr. Jianhua Yang of HP Labs for their help on TiO2 film sputtering and refractive indices measurement.
Name | Company | Catalog Number | Comments |
184 Silcone elastomer kit | Sylgard | Polydimethylsiloxane (PDMS) | |
4 inch silicon wafer | Universitywafer | ||
4 inch fused silica wafer | Universitywafer | ||
Poly(methyl methacrylate) | Sigma-Aldrich | 182265 | |
UV-curable resist | Nor available on market | ||
PlasmaLab System 100 | Oxford Instruments | ICP IRE machine | |
UV curing system for nanoimprint fabrication | Not available on market | ||
Ocean Optics HR-4000 | Ocean Optics | HR-4000 | Spectrometer with normal detector |
Lambda 950 UV / VIS | PerkinElmer | spectrometer with hemisphere intergration detector | |
JSM-7001F-LV | JEOL | Field emission SEM | |
DC magnetron sputtering machine | Equipment is in HP labs, who helped us to sputter the TiO2 | ||
Metal e-beam evaporator | Temescal | BJD-1800 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved