A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Ammonia emissions are a major threat to the environment by eutrophication, soil acidification and fine particle formation and stem mainly from agricultural sources. This method allows ammonia loss measurements in replicated field trials enabling statistical analysis of emissions and of relationships between crop development and emissions.
Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha-1). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from experiments with taller plants should be treated more carefully.
Ammonia (NH3) is the only atmospheric trace gas predominantly (90%) emitted from agricultural sources in the EU. Although agriculture is also a major source (>50% of EU emissions), these contribute only to about ~5% to the total of EU15 anthropogenic greenhouse gas emissions. In contrast, agricultural NH3 emissions are responsible for about 45% of emission-derived eutrophication, 31% of acidification and 12% fine dust formation within the EU151. In addition to detrimental effects to ecosystems and human health, nitrogen (N) loss by NH3 emission is an economic loss to farmers2. Nitrogen fertilizer is essential for the high rate of food production delivered by modern agriculture. Apart of the environmental damage, NH3 emissions thus, mean a considerable loss of nutrients, as NH3 is derived from fertilizer ammonium, in addition to nitrate the key mineral nitrogen species directly available to the plant governing crop growth processes and yield. Application of N fertilizers contributes €20-80 billion of profit per year for EU farmers but in turn it was estimated that NH3 released into the air from agriculture causes ~€50 billion in annual damage in the EU3. Therefore, reduction of NH3 emissions is essential for both decreasing the environmental effects and increasing the efficiency of the applied N.
In agriculture, NH3 is mainly emitted from animal houses, manure (slurries, anaerobic digestates (AD), solid manure) storage and management as well as manure field application. The propensity to emit NH3 differs depending on manure composition, e.g. dry matter content and manure pH. To some extent ammonium and amine based synthetic nitrogen fertilizers as urea and diammonium phosphate also contribute to NH3 emissions. Although calcareous ammonium nitrate (CAN) is the principal N fertilizer in many European countries, the use of granular urea has increased, and was second to CAN in Central and Western Europe in 20124. Urea is particularly popular in developing countries due to its advantages of a high N content, safety, and easy transportation and is the world's most important synthetic nitrogen fertilizer5. However, the increase of pH and surface soil NH4+-concentrations resulting from urea hydrolysis can result in high NH3 emissions. This can cause low N use efficiency, especially in alkaline soil or soil with low sorption capacity, which limits the use of urea fertilizer in Europe6,7.
Many studies on NH3 emission from organic and mineral fertilizer application and livestock housing have been performed in recent decades6, 8. Nevertheless, the research related to NH3 emissions after application of ammonia emitting fertilizers is still limited. This in particular applies to the relationship between ammonia emissions, fertilizer type used, site conditions and crop growth. Under ideal conditions this requires replicated field trials due to the variable response of crops to treatments which can only be validated in an experimental design including field replication for statistical testing.
Ammonia losses should therefore also be determined in replicated multi-plot field trials9, but the dominating ammonia loss methods yielding quantitative emissions (i.e. kg N/(ha*h)) require large field areas (micrometeorological methods), expensive equipment (wind tunnels) or in-field electrical power supply which make their application in replicated field trials difficult or impossible. In addition, specific settings of wind tunnels have been criticized with respect to the accuracy of obtained emission values10. Therefore, there is a strong need for an ammonia loss method to determine ammonia emissions in replicated field trials. This method could be used to help improve agricultural measures to reduce ammonia emissions based on statistically validated effects of site conditions, fertilizer type, application methods and crop development.
The basic idea of the new methodology, calibrated passive sampling, is to link a simple semi-quantitative measuring method for the measurement on many plots, with a quantitative method by simultaneous measurements with both methods on a few plots. Passive samplers modified compared to the design in the original publication11 are used as a semi-quantitative measurement method. The Dynamic-Tube Method (DTM)12, a calibrated dynamic chamber method, is employed to obtain a transfer coefficient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg N ha-1). Due to the low air exchange rate in the chamber system uncalibrated emissions obtained from the DTM are about one order of magnitude lower than true emissions. However, this problem was overcome by a calibration equation which corrects the chamber fluxes depending on in-situ wind conditions13. These calibration equations can only be applied when chambers have the same internal headspace volume and design as those used in the calibration trials. Chambers can be directly inserted in soil or placed on soil rings. The latter prevent excessive disturbance of the soil and allows an almost airtight introduction of the chambers on dense grass swards or compacted soil. Moreover, the exact amount of fertilizer to be tested can be applied inside the soil rings. However, soil clods on the soil rings can also entail clamping between the chamber and the soil ring.
Figure 1: Simultaneous measurement with passive samplers and chamber method (DTM) in field plot. Passive sampler is located in the center of a square plot 0.15 m above soil/canopy. Measurements with DTM are made at least 2 locations within a plot per measurement date. Areas dedicated for harvest should not be affected by chamber and passive sampler measurement operations.
To derive the transfer coefficients measurements are carried out simultaneously on a small number of plots with both methods (Figure 1). It is important that they are applied with the same total measurement duration and that measurements are carried out at the same time (within 1 hr). The principle facilitating the application of a transfer coefficient for many plots is based on the fact that passive samplers placed in a homogeneous experimental field, with appropriate distance to obstacles disturbing the wind field as hedges, buildings etc. (at least 10 times, ideally 20 times of obstacle height)14, have the same NH3 absorption behavior under identical environmental conditions. So, for example, 50% lower emission on a plot would directly translate to 50% reduced ammonia uptake by a sampler solution. Therefore, a transfer coefficient used for scaling of acid trap values on a single plot can be used to scale the values of all acid traps used in the same field trial. Due to effects of varying environmental conditions (temperature, wind speed, surface roughness) on ammonia uptake efficiency of passive samplers11 the transfer coefficient has to be derived for each measurement campaign, respectively.
The general features of the two methods applied and the required design of field trials include 4 dynamic chambers placed onto the soil connected with Polytetrafluoroethylene (PTFE) tubing and ventilated by a bellows pump (DTM), passive samplers and large quadratic experimental plots with large buffer spaces for reducing the effect of NH3 drift between plots on the emission measurement on the actual plot.
The passive samplers are filled with dilute sulfuric acid (0.05 M H2SO4) and are placed in the center of the plots. The solution in the passive samplers continuously absorbs ammonia, and is replaced regularly depending on the expected intensity of the emissions. Simultaneously, NH3 fluxes are measured with the DTM on two treatment plots and a control plot at specific points in time. In contrast to wind tunnels, both methods combined in calibrated passive sampling have only very limited effects on soil moisture, soil temperature and rainfall which can affect ammonia emission losses very strongly6,8. While passive samplers are mounted 0.15 m above soil and canopy surface, without any effect on those variables, measurements with DTM chambers last only for about 5 min reducing potential chamber effects to a minimum.
Accurate results for NH4+ concentrations in the sampling solution can be obtained by measurements with ammonium-sensitive electrodes. Measurements with Continuous-Flow Auto Analyzers can be problematic as pH sensitive color reaction applied in these instruments can by hampered by the acidic pH of the sampling solution and chemicals used require modification. NH3 concentrations in the air passed through the chamber system of the DTM are instantaneously measured with indicator tubes. The measured NH3 concentrations are recorded on a data sheet after each measurement.
For DTM, NH3 fluxes (mg N/(m² *h)) are calculated from measured NH3 concentrations and air flow rate through the 4 chamber system and the area covered by the chambers (Eq. 1, paragraph 2.5.1). The resulting un-calibrated fluxes (which underestimate the true emissions) are scaled to quantitative losses with a calibration equation (Eq. 2 and 3, see paragraph 2.5.1). Scaled cumulative NH3 losses (kg N/ha) of the DTM are calculated by averaging the fluxes between two subsequent measurement dates, multiplying this average flux with the duration of each interval, and adding-up all losses from all measurement intervals of a measurement campaign. Cumulative qualitative NH3 losses (ppm sum) from passive samplers are calculated by adding up collected NH4+-concentrations (ppm) on a plot within an experimental campaign. This is feasible because under identical volume and measurement temperatures, ppm values directly translate into captured amounts of ammonia. To scale these qualitative losses to quantitative losses the transfer coefficient (kg N/(ha *ppm)) is derived by relating cumulative final loss of the DTM (kg N ha-1) to the total sum of concentrations in the samplers measured on the same plots. This transfer coefficient is then used to convert semi-quantitative emissions from passive sampling to quantitative fluxes (e.g. kg N/ha) by multiplying the cumulative concentrations with the transfer coefficient.
Loss of water from the collectors through evaporation does not affect the absorption capacity but has to be corrected later for data analysis. Spilling of solution due to during strong winds has not been observed even in the coastal marshes of northern Germany. Decisive for a successful application of this approach is the identical design of all passive samplers applied in the field including identical position and height of placement within a plot. Several designs of passive samplers have been successfully applied in the past. This paper suggests one particular design which has proved reliable and easy to operate in field measurements. The presented approach has been extensively tested by comparison to standard ammonia loss methods (micrometeorological methods) in about 15 field trials confirming the quantitative validity of the procedure15,16 and an unbiased representation of the emissions dynamics17. The coefficient of determination (r²) of calibrated fluxes compared to the micrometeorological measurements in the calibration study13 was 0.84, quite similar to the coefficient obtained by comparing ammonia sensors for measured atmospheric ammonia concentrations in a recent study18. The relative root-mean-square error of cumulative ammonia losses was 17%, also quite close to values obtained in other studies comparing micrometeorological measurements13. In the second validation where the proposed method was compared to micrometeorological measurements of ammonia emissions from organic slurries (5 separate trials), an r² of 0.96 (slope of curve ≈ 1) and a relative root-mean-square error of 5% was obtained for final cumulated ammonia emissions15. The method has proved sensitive in a 3 year field trial using different synthetic N fertilizers19. The application of this approach is restricted to average wind speeds ≤4 m/sec at 2 m height as the chamber method was only validated under those conditions 13,15,16.
A measurement campaign is defined as an experiment testing ammonia emissions after application of fertilizers on several plots lasting for several days, up to weeks. Each measurement campaign on a plot consists of several subsequent sampling intervals (passive sampler) or measurement dates (DTM). Sampling interval is defined as sequential duration of absorbance of emitted ammonia by a sampling solution. Measurement date is defined as sequential point in time at which DTM measurements are done on different plots used for deriving the transfer coefficient.
Access restricted. Please log in or start a trial to view this content.
1. Experimental Design and General Operational Instructions
Figure 2: Optimum experimental design for multi-plot ammonia loss measurements with passive samplers. Use relatively large (12 m x 12 m; 9 m x 9 m) square treatment plots separated on each side by untreated guard plots. To avoid canopy effects on NH3 emissions buffer plots can be fertilized with zero-emission nitrate fertilizers.
2. Preparations Before Going to the Field
Figure 3: Set-up and application of dynamic chamber of Dynamic Tube Method (DTM). Each system consists of 4 chambers connected by PTFE tubing, reduction connection are used to connect all chambers to one pump. Air is drawn through a copper tube perforated at the lower end and sealed at the very bottom, passed over the soil, and sucked at the top of the conical internal volume to another copper tube. The air which has passed through the system is then led via PTFE tubing to the indicator tube for determination of ammonia concentrations.
Figure 4: Indicator tubes with pump dispenser and hand pump. Right side: hand pump (stroke counter, window for pump control with white spot) with used indicator tube; left side: pump dispenser (control display, control buttons) and new indicator tube (0.25-3 ppm). Original filling of indicator tube has a yellow color. Reaction with ammonia results in a change to purple color, color front is dislocated within the scale. Ammonia concentration values are obtained by reading the scale.
no. | Components of Dräger tube system |
1 | 4 stainless steel measuring chambers (Figure 3) |
2 | 7 segments of Teflon tubing (7 mm x 6 mm; 0.3 m length each); replace when strongly kinked |
3 | 3 y-connectors (PP) |
4 | Optional: soil ring, stainless steel (particularly recommended for measurements on grassland) |
5 | Hand pump (Figure 4) |
6 | Indicator tubes (1 box contains 10 tubes) (Figure 4) |
7 | Optional: pump dispenser (Figure 4) |
8 | Optional: stopwatch, when hand pump is used for measurements |
Table 1: Indicator tubes (concentration ranges) used for ammonia loss measurements.
Tube | Range of concentration (volume ppm; µl/l) | Default number of strokes | Comment |
Ammonia 0.25/a | 0.25 – 3 | 10 | Lowest detectable concentration (ca. 0.05 volume-ppm) can be measured by increasing the stroke number to a maximum of 50 strokes |
Ammonia 2/a | 2 – 30 | 5 | |
Ammonia 5/a | 5 – 70 (600 1 stroke) | 10 |
Table 2: Components needed to set-up a Dynamic Tube Method measurement system.
Figure 5: Set-up of passive sampler (acid trap). The main part of the sampler consists of an acid proof bottle with 1-2 windows at each side (size depends on size of the bottle). A drill hole at an upper edge is used to drain the bottle. Therefore windows are slightly shifted from this corner of this edge of the bottle to allow easy handling while draining. The bottle is filled through the mouth at the top with sampling solution and fixed with the mouth to the lid which is screwed to the stainless steel roof. Roofs can be attached by a flexible screw fixing to the steel rod to allow adjustment to different canopy heights by using only one length of the steel rod.
no. | Components of passive sampling system |
1 | Steel rod with attachment point for plastic roof (length 0.5 m) |
2 | stainless steel roof |
3 | Cubic passive sampler made from an acid resistant PE bottle with 1-2 mosquito net covered windows on each side. At one upper edge a hole is drilled for draining used sampling solution. Shift windows slightly from the center to allow dispensing of solution through the hole with low risk of spilling through the windows. Fix lid of the bottle with 2 screws to the steel roof. Screw bottle on the lid. |
4 | Small vials for transport and refilling of sampler solution (20 ml 0.05 M H2SO4 solution) — several hundred for large trials |
5 | Large containers/bottles with sampler solution (0.05 M H2SO4 solution) for all vials |
6 | Bottle-top dispenser to fill the small containers with collector solution (20 ml) |
7 | Freezer for sampling solution storage |
Table 3: Components needed to set-up a passive sampler and for carrying out passive sampling measurements.
3. After Going to the Field and Making Measurements
4. Calculation of NH3 Fluxes
Access restricted. Please log in or start a trial to view this content.
In year 2014, a field trial was set up in the center of Denmark for testing the effects of several methods to reduce ammonia emissions after application of cattle slurry: incorporation with a rotary tiller, incorporation of acidified slurry and closed slot injection (injection of slurry in soil with subsequent coverage with soil). As a comparison with a high emission application technique and in particular for proper application of the chamber method trail hose application of slurry was also included. Altogether 24 plots were included in thi...
Access restricted. Please log in or start a trial to view this content.
It was shown that the proposed method can be used to compare ammonia emissions from different fertilizer treatments in replicated field trials and to use the obtained statistically significant information from these measurements to improve management of N fertilizers. The quantity of emissions obtained by this approach has been validated in earlier studies by comparison with micrometeorological measurements13,15,16. In this paper, the quantitative validity of this approach was indirectly demonstrated by a clos...
Access restricted. Please log in or start a trial to view this content.
The author declares that he has no competing financial interests.
The author is grateful to Dr. Marco Roelcke, Dr. Dirk Niekisch, Dr. Robert Quakernack, Dr. Kang Ni for their effort in developing and further development of this approach. Many thanks also to the field technicians Doris Ziermann and Jun Yang. The underlying investigations were supported by Deutsche Forschungsgemeinschaft, the Federal State Schleswig Holstein, EFRE grants of the European Union and SKW Piesteritz corp. as indicated in detail in the cited publications.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
stainless steel Dräger chamber + soil rings | Fa. Hofmann GmbH, Metallindustriewerk, Kiel, Germany | no number | |
roofs and stainless steel rod for passive sampler | Fa. Hofmann GmbH, Metallindustriewerk, Kiel, Germany | no number | |
ammonia electrode + bench | Thermo scientific | Cat. No. 9512BNWP or 951201 | |
ammonia electrode filling solution | Thermo scientific | Cat. No. 951202 | |
Ammonia calibration standards; 0.1 M ammonia chloride standard | Thermo scientific | Cat. No. 951006 | |
Dräger pumps | Draeger Safety AG& Co Kg | ||
Dräger tubes | Draeger Safety AG& Co Kg | types: 0.25/a; 2/a; 5/a | |
acid resistant passive sampling bottles (Azlon bottle, HDPE) | Dunn Labortechnik GmbH | Cat.No.: BGE230P | |
small vials (scintillation bottles PE 60 mm x 27 mm) | any laboratory store | ||
PTFE tubing 7 mm x 1 mm WDG | any laboratory store | ||
connectors PP Y-Form 6-7 mm | any laboratory store |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved