JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction

Published: October 14th, 2016

DOI:

10.3791/54021

1Department of Experimental Cardiology, University Medical Center Utrecht, 2Department of Cardiology, University Medical Center Utrecht, 3Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, 4Interuniversity Cardiology Institutes of the Netherlands (ICIN)

Reliable and accurate outcome assessment is the key for translation of preclinical therapies into clinical treatment. The current paper describes how to assess three clinically relevant primary outcome parameters of cardiac performance and damage in a pig acute myocardial infarction model.

Mortality after acute myocardial infarction remains substantial and is associated with significant morbidity, like heart failure. Novel therapeutics are therefore required to confine cardiac damage, promote survival and reduce the disease burden of heart failure. Large animal experiments are an essential part in the translational process from experimental to clinical therapies. To optimize clinical translation, robust and representative outcome measures are mandatory. The present manuscript aims to address this need by describing the assessment of three clinically relevant outcome modalities in a pig acute myocardial infarction (AMI) model: infarct size in relation to area at risk (IS/AAR) staining, 3-dimensional transesophageal echocardiography (TEE) and admittance-based pressure-volume (PV) loops. Infarct size is the main determinant driving the transition from AMI to heart failure and can be quantified by IS/AAR staining. Echocardiography is a reliable and robust tool in the assessment of global and regional cardiac function in clinical cardiology. Here, a method for three-dimensional transesophageal echocardiography (3D-TEE) in pigs is provided. Extensive insight into cardiac performance can be obtained by admittance-based pressure-volume (PV) loops, including intrinsic parameters of myocardial function that are pre- and afterload independent. Combined with a clinically feasible experimental study protocol, these outcome measures provide researchers with essential information to determine whether novel therapeutic strategies could yield promising targets for future testing in clinical studies.

Heart failure with reduced ejection fraction (HFrEF) accounts for about 50% of all heart failure cases, affecting an estimated 1 - 2% of people in the western world1. Its most prevalent cause is acute myocardial infarction (AMI). As acute mortality after AMI has declined significantly due to increased awareness and improved treatment options, emphasis has shifted towards its chronic sequelae; the most prominent being HFrEF2,3. Together with increasing health care costs4, the growing epidemic of heart failure stresses the need for novel diagnostics and therapies, which can be studied in a highly translational porcine model of adverse re....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal experiments were approved by the Ethical Committee on Animal Experimentation of the University Medical Center Utrecht (Utrecht, the Netherlands) and conform to the 'Guide for the care and use of laboratory animals'.

NOTE: The protocol to perform a closed-chest balloon occlusion is not part of the current manuscript and is described in detail elsewhere5. In short, pigs (60 - 70 kg) are subjected to 75 min transluminal balloon occlusion of the midportion of the left.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

3D Transesophageal Echocardiography

3D transesophageal echocardiography (3D-TEE) can be used for the assessment of global cardiac function. After AMI, global cardiac function differs from healthy baseline values. In particular, left ventricular ejection fraction (LVEF) decreases from 59 ± 4% to 37 ± 6% after one week of reperfusion (n = 10) (GPJ van Hout, 2015). An increase in end-systolic volume (51 &.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Cardiac remodeling is largely depending on myocardial infarct size and the quality of myocardial infarct repair6,26. To assess the former in a standardized manner, the present manuscript provides an elegant method of in vivo infusion of Evans blue combined with ex vivo TTC staining, which has been validated and extensively used8,16,27,28. This method allows for quantification of the area at risk (AAR) and infarct size in relation to AAR16. The current approach .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors gratefully acknowledge Marlijn Jansen, Joyce Visser, Grace Croft, Martijn van Nieuwburg, Danny Elbersen and Evelyn Velema for their excellent technical support during the animal experiments.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
3-dimensional transesophageal echocardiography
iE33 ultrasound device Philips -
X7-2t transducer Philips -
Aquasonic® 100 ultrasound transmission gel Parker Laboratories Inc. 01-34 Alternative product can be used
Battery handle type C (laryngoscope handle) Riester 12303
Ri-Standard Miller blade MIL 4 (laryngoscope blade) Riester 12225
Qlab 10.0 (3DQ Advanced) analysis software Philips -
Name Company Catalog Number Comments
Pressure-volume loop acquisition
Cardiac defibrillator Philips
0.9% saline Braun
8F Percutaneous Sheath Introducer Set Arrow CP-08803 Alternative product can be used
9F Radifocus® Introducer II Standard Kit  Terumo RS*A90K10SQ Alternative product can be used
8F Fogarty catheter Edward Life Sciences 62080814F Alternative product can be used
7F Criticath™ SP5107H TD catheter (Swan-Ganz) Becton Dickinson (BD) 680078 Alternative product can be used
Ultraview SL Patient Monitor and Invasive Command Module (external cardiac output device) Spacelabs Healthcare 91387 Alternative product can be used
ADVantage system™ Transonic SciSense -
7F tetra-polar admittance catheter (7.0 VSL Pigtail / no lumen) Transonic SciSense -
Multi-channel acquisition system (Iworx 404) Iworx -
Labscribe V2.0 analysis software Iworx - Alternative product can be used
Name Company Catalog Number Comments
Infarct size / area-at-risk quantification
Diathermy - Alternative product can be used
Lebsch knife - Alternative product can be used
Hammer - Alternative product can be used
Bone marrow wax Syneture Alternative product can be used
Klinkenberg scissors - Alternative product can be used
Retractor - Alternative product can be used
Surgical scissors -
7F Percutaneous Sheath Introducer Set  Arrow CP-08703 Alternative product can be used
8F Percutaneous Sheath Introducer Set  Arrow CP-08803 Alternative product can be used
7F JL4 guiding catheter  Boston Scientific H749 34357-662 Alternative product can be used
8F JL4 guiding catheter  Boston Scientific H749 34358-662  Alternative product can be used
COPILOT Bleedback Control Valves  Abbott Vascular 1003331 Alternative product can be used
BD Connecta™  Franklin Lakes 394995 Alternative product can be used
Contrast agent Telebrix
Persuader 9 Steerable Guidewire 9 (0.014", 180 cm, straight tip), hydrophilic coating Medtronic Inc. 9PSDR180HS Alternative product can be used
SAPPHIRE™ Coronary Dilatation Catheter (PTCA balloon suitable for the size of the particular coronary artery (2.75 - 3.25 mm)) OrbusNeich 103-3015 Alternative product can be used
Evans Blue  Sigma-Aldrich E2129-100G Toxic. Alternative product can be used
2,3,5-triphenyl-tetrazolium chloride (TTC) Sigma-Aldrich T8877-100G Irritant. Alternative product can be used
9V battery - -
Ruler - -
Photocamera Sony -
ImageJ National Institutes of Health - Alternative product can be used

  1. Mosterd, A., Hoes, A. W. Clinical epidemiology of heart failure. Heart. 93 (9), 1137-1146 (2007).
  2. Nichols, M., et al. . European Cardiovascular Disease Statistics. , (2012).
  3. Krumholz, H. M., et al. Reduction in Acute Myocardial Infarction Mortality in the United States. JAMA. 302 (7), 767-773 (2010).
  4. Go, A. S., et al. Heart disease and stroke statistics - 2013 update: A Report from the American Heart Association. Circulation. 127 (1), (2013).
  5. Koudstaal, S., et al. Myocardial infarction and functional outcome assessment in pigs. J. Vis. Exp. (86), e51269 (2014).
  6. Chareonthaitawee, P., Christian, T. F., Hirose, K., Gibbons, R. J., Rumberger, J. A. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J. Am. Coll. Cardiol. 25 (3), 567-573 (1995).
  7. Yellon, D. M., Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357 (11), 1221-1235 (2007).
  8. Suzuki, Y., Lyons, J. K., Yeung, A. C., Ikeno, F. In vivo porcine model of reperfused myocardial infarction: In situ double staining to measure precise infarct area/area at risk. Catheter Cardiovasc. Interv. 71 (1), 100-107 (2008).
  9. Weidemann, F., et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am. J. Physiol. Heart Circ. Physiol. 283 (2), H792-H799 (2002).
  10. Mercier, J. C., et al. Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation. 65 (5), 962-969 (1982).
  11. De Jong, R., et al. Cardiac Function in a Long-Term Follow-Up Study of Moderate and Severe Porcine Model of Chronic Myocardial Infarction. Biomed. Res. Int. 2015, 1-11 (2015).
  12. Van Hout, G. P. J., et al. Invasive surgery reduces infarct size and preserves cardiac function in a porcine model of myocardial infarction. J. Cell. Mol. Med. , 2655-2663 (2015).
  13. Meybohm, P., et al. Assessment of left ventricular systolic function during acute myocardial ischemia: A comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiol. 77 (2), 132-141 (2011).
  14. Gruenewald, M., et al. Visual evaluation of left ventricular performance predicts volume responsiveness early after resuscitation from cardiac arrest. Resuscitation. 82 (12), 1553-1557 (2011).
  15. Bolli, R., Becker, L., Gross, G., Mentzer, R., Balshaw, D., Lathrop, D. A. Myocardial protection at a crossroads: The need for translation into clinical therapy. Circ. Res. 95 (2), 125-134 (2004).
  16. Timmers, L., et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 53 (6), 501-510 (2009).
  17. Csonka, C., et al. Measurement of myocardial infarct size in preclinical studies. J. Pharmacol. Toxicol. Methods. 61 (2), 163-170 (2010).
  18. Law, R., Katzka, D. A., Baron, T. H. Zenker's Diverticulum. Clin. Gastroenterol. Hepatol. 12 (11), 1773-1782 (2014).
  19. Philips Healthcare. . QLAB 10.0 Quick Card: 3DQ and 3DQ Adv measurements guide. , (2013).
  20. Transonic. . ADV500 Pressure-Volume Measurement System Use and Care Manual, version 5. , (2006).
  21. Schramm, W. Is the cardiac output obtained from a Swan-Ganz catheter always zero?. J. Clin. Monit. Comput. 22 (6), 431-433 (2008).
  22. iWorx. . LabScribe 3: Software Manual for Pressure-Volume Analyses. , (2014).
  23. Hueper, W. C., Ichniowski, C. T. Toxicopathologic studies on the dye T-1824. Arch. Surg. 48 (1), 17-26 (1944).
  24. Van Hout, G. P. J., et al. Admittance-based pressure-volume loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction. Physiol. Rep. 2 (4), 1-9 (2014).
  25. Burkhoff, D., Mirsky, I., Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. Heart Circ. Physiol. 289 (2), H501-H512 (2005).
  26. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11 (5), 255-265 (2014).
  27. Fishbein, M., et al. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am. Heart. J. 101 (5), 593-600 (1981).
  28. Arslan, F., et al. Treatment with OPN-305, a humanized anti-toll-like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ. Cardiovasc. Interv. 5 (2), 279-287 (2012).
  29. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E., Flameng, W. Left ventricular support by Catheter-Mountedaxial flow pump reduces infarct size. J. Am. Coll. Cardiol. 41 (7), 1087-1095 (2003).
  30. Khalil, P. N., et al. Histochemical assessment of early myocardial infarction using 2,3,5-triphenyltetrazolium chloride in blood-perfused porcine hearts. J. Pharmacol. Toxicol. Methods. 54 (3), 307-312 (2006).
  31. Gardner, B. I., Bingham, S. E., Allen, M. R., Blatter, D. D., Anderson, J. L. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc. Ultrasound. 7, 38 (2009).
  32. Santos-Gallego, C., et al. 3D-Echocardiography Demonstrates Excellent Correlation With Cardiac Magnetic Resonance for Assessment of Left Ventricular Function and Volumes in a Model of Myocardial Infarction. J. Am. Coll. Cardiol. 59 (13), E1564 (2012).
  33. Keith Jones, ., W, , et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 120, S1-S9 (2009).
  34. Gross, G. J., Baker, J. E., Moore, J., Falck, J. R., Nithipatikom, K. Abdominal Surgical Incision Induces Remote Preconditioning of Trauma (RPCT) via Activation of Bradykinin Receptors (BK2R) and the Cytochrome P450 Epoxygenase Pathway in Canine Hearts. Cardiovasc. Drugs Ther. 25 (6), 517-522 (2011).
  35. Van Hout, G. P. J., de Jong, R., Vrijenhoek, J. E. P., Timmers, L., Duckers, H. J., Hoefer, I. E. Admittance-based pressure-volume loop measurements in a porcine model of chronic myocardial infarction. Exp. Physiol. 98 (11), 1565-1575 (2013).
  36. Sunagawa, K., Maughan, W. L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol. 245 (5 Pt 1), H773-H780 (1983).
  37. Steendijk, P., Baan, J., Der Velde, E. T. V. a. n., Baan, J. Effects of critical coronary stenosis on global systolic left ventricular function quantified by pressure-volume relations during dobutamine stress in the canine heart. J. Am. Coll. Cardiol. 32 (3), 816-826 (1998).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved