A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a protocol for the functional assessment of comprehensive single-site saturation mutagenesis libraries of proteins utilizing high-throughput sequencing. Importantly, this approach uses orthogonal primer pairs to multiplex library construction and sequencing. Representative results using TEM-1 β-lactamase selected at a clinically relevant dosage of ampicillin are provided.
Site-directed mutagenesis has long been used as a method to interrogate protein structure, function and evolution. Recent advances in massively-parallel sequencing technology have opened up the possibility of assessing the functional or fitness effects of large numbers of mutations simultaneously. Here, we present a protocol for experimentally determining the effects of all possible single amino acid mutations in a protein of interest utilizing high-throughput sequencing technology, using the 263 amino acid antibiotic resistance enzyme TEM-1 β-lactamase as an example. In this approach, a whole-protein saturation mutagenesis library is constructed by site-directed mutagenic PCR, randomizing each position individually to all possible amino acids. The library is then transformed into bacteria, and selected for the ability to confer resistance to β-lactam antibiotics. The fitness effect of each mutation is then determined by deep sequencing of the library before and after selection. Importantly, this protocol introduces methods which maximize sequencing read depth and permit the simultaneous selection of the entire mutation library, by mixing adjacent positions into groups of length accommodated by high-throughput sequencing read length and utilizing orthogonal primers to barcode each group. Representative results using this protocol are provided by assessing the fitness effects of all single amino acid mutations in TEM-1 at a clinically relevant dosage of ampicillin. The method should be easily extendable to other proteins for which a high-throughput selection assay is in place.
Mutagenesis has long been employed in the laboratory to study the properties of biological systems and their evolution, and to produce mutant proteins or organisms with enhanced or novel functions. While early approaches relied on methods which produce random mutations in organisms, the advent of recombinant DNA technology enabled researchers to introduce select changes to DNA in a site-specific manner, i.e., site-directed mutagenesis1,2. With current techniques, typically using mutagenic oligonucleotides in a polymerase chain reaction (PCR), it is relatively facile to create and assess small numbers of mutations (e.g., point mutations) in a given gene3,4. It is far more difficult however when the goal approaches, for example, the creation and assessment of all possible single-site (or higher-order) mutations.
While much has been learned from early studies attempting to assess large numbers of mutations in genes, the techniques used were often laborious, for example requiring the assessment of each mutation independently using nonsense suppressor strains5-7, or were limited in their quantitative ability due to the low sequencing depth of Sanger sequencing8. The techniques used in these studies have largely been supplanted by methods utilizing high-throughput sequencing technology9-12. These conceptually simple approaches entail creating a library comprising a large number of mutations, subjecting the library to a screen or selection for function, and then deep-sequencing (i.e., on the order of >106 sequencing reads) the library obtained before and after selection. In this way, the phenotypic or fitness effects of a large number of mutations, represented as the change in population frequency of each mutant, can be assessed simultaneously and more quantitatively.
We previously introduced a simple approach for assessing libraries of all possible single amino acid mutations in proteins (i.e., whole-protein saturation mutagenesis libraries), applicable to genes with a length longer than the sequencing read length11,13: First, each amino acid position is randomized by site-directed mutagenic PCR. During this process, the gene is split into groups composed of contiguous positions with a total length accommodated by the sequencing platform. The mutagenic PCR products for each group are then combined, and each group independently subjected to selection and high-throughput sequencing. By maintaining a correspondence between the location of mutations in the sequence and the sequencing read length, this approach has the advantage of maximizing sequencing depth: while one could simply sequence such libraries in short windows without splitting into groups (e.g., by a standard shotgun sequencing approach), most reads obtained would be wild-type and thus the majority of sequencing throughput wasted (e.g., for a whole-protein saturation mutagenesis library of a 500 amino acid protein sequenced in 100 amino acid (300 bp) windows, at minimum 80% of reads will be the wild-type sequence).
Here, a protocol is presented which utilizes high-throughput sequencing for the functional assessment of whole-protein saturation mutagenesis libraries, using the above approach (outlined in Figure 1). Importantly, we introduce the usage of orthogonal primers in the library cloning process to barcode each sequence group, which allows them to be multiplexed into one library, subjected simultaneously to screening or selection, and then de-multiplexed for deep sequencing. Since the sequence groups are not subjected to selection independently, this reduces the workload and ensures that each mutation experiences the same level of selection. TEM-1 β-lactamase, an enzyme which confers high-level resistance to β-lactam antibiotics (e.g., ampicillin) in bacteria is used as a model system14-16. A protocol is described for the assessment of a whole-protein saturation mutagenesis library of TEM-1 in E. coli under selection at an approximate serum level for a clinical dose of ampicillin (50 µg/ml)17,18.
Access restricted. Please log in or start a trial to view this content.
Note: See Figure 1 for outline of protocol. Several steps and reagents in the protocol require safety measures (indicated with "CAUTION"). Consult material safety data sheets before use. All protocol steps are performed at RT unless other indicated.
1. Prepare Culture Media and Plates
2. Construction of the Whole-gene Saturation Mutagenesis Library
Note: Primers; completed PCRs, restriction digests and ligations; and purified DNA samples can be stored at -20 °C.
3. Selection of the TEM-1 Whole-protein Saturation Mutagenesis Library for Antibiotic Resistance
4. High-throughput Sequencing to Determine the Fitness Effects of Mutations
Access restricted. Please log in or start a trial to view this content.
The plasmid map for the five modified pBR322 plasmids containing orthogonal priming sites (pBR322_OP1 - pBR322_OP5) is shown in Figure 2A. To test whether the orthogonal primers are specific, PCRs were performed using each pair of orthogonal primers individually, along with all five pBR322_OP1-5 plasmids, or with all plasmids minus the plasmid matching the orthogonal primer pair. The correct product was only obtained when the matching plasmid was included, and no product ...
Access restricted. Please log in or start a trial to view this content.
Here a protocol is described for performing the functional assessment of whole-protein saturation mutagenesis libraries, using high-throughput sequencing technology. An important aspect of the method is the use of orthogonal primers during the cloning process. Briefly, each amino acid position is randomized by mutagenic PCR, and mixed together into groups of positions whose combined sequence length is accommodated by high-throughput sequencing. These groups are cloned into plasmid vectors containing pairs of orthogonal p...
Access restricted. Please log in or start a trial to view this content.
The authors declare they have no competing financial interests
R.R. acknowledges support from the National Institutes of Health (RO1EY018720-05), the Robert A. Welch Foundation (I-1366), and the Green Center for Systems Biology.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Typtone | Research Products Intl. Corp. | T60060-1000.0 | |
Yeast extract | Research Products Intl. Corp. | Y20020-500.0 | |
Sodium chloride | Fisher Scientific | BP358-212 | |
Potassium chloride | Sigma-Aldrich | P9333-500G | |
Magnesium sulfate | Sigma-Aldrich | M7506-500G | |
Agar | Fisher Scientific | BP1423-500 | |
Tetracycline hydrochloride | Sigma-Aldrich | T7660-5G | |
Petri plates | Corning | 351029 | |
MATLAB | Mathworks | http://www.mathworks.com/products/matlab/ | |
Oligonucleotide primers | Integrated DNA Technologies | https://www.idtdna.com/pages/products/dna-rna/custom-dna-oligos | 25 nmol scale, standard desalting |
pBR322_AvrII | available upon request | pBR322 plasmid modified to contain AvrII restriction site downstream of the TEM-1 gene | |
pBR322_OP1 – pBR322_OP5 | available upon request | five modified pBR322 plasmids each containing a pair of orthogonal priming sites | |
Q5 high-fidelity DNA polymerase | New England Biolabs | M0491L | includes 5x PCR buffer and PCR additive (GC enhancer) |
15 ml conical tube | Corning | 430025 | |
Multichannel pipettes (Eppendorf ResearchPlus) | Eppendorf | ||
PCR plate, 96 well | Fisher Scientific | 14230232 | |
96 well plate seal | Excel Scientific | F-96-100 | |
Veriti 96-well thermal cycler | Applied Biosystems | 4375786 | |
6x gel loading dye | New England Biolabs | B7024S | |
Agarose | Research Products Intl. Corp. | 20090-500.0 | |
Ethidium bromide | Bio-Rad | 161-0433 | |
UV transilluminator (FOTO/Analyst ImageTech) | Fotodyne Inc. | http://www.fotodyne.com/content/ImageTech_gel_documentation | |
EB buffer | Qiagen | 19086 | |
96-well black-walled, clear bottom assay plates | Corning | 3651 | |
Lambda phage DNA | New England Biolabs | N3011S | |
PicoGreen dsDNA reagent | Invitrogen | P7581 | dsDNA quantitation reagent, used in protocol step 2.2.4 |
Victor 3 V microplate reader | PerkinElmer | ||
DNA purification kit | Zymo Research | D4003 | |
Microcentrifuge tubes | Corning | 3621 | |
Long-wavelength UV illuminator | Fisher Scientific | FBUVLS-80 | |
Agarose gel DNA extraction buffer | Zymo Research | D4001-1-100 | |
AatII | New England Biolabs | R0117S | |
AvrII | New England Biolabs | R0174L | |
T4 DNA ligase | New England Biolabs | M0202S | |
EVB100 electrocompetent E. coli | Avidity | EVB100 | |
Electroporator (E. coli Pulser) | Bio-Rad | 1652102 | |
Electroporation cuvettes | Bio-Rad | 165-2089 | |
Spectrophotometer (Ultrospec 3100 pro) | Amersham Biosciences | 80211237 | |
50 ml conical tubes | Corning | 430828 | |
Plasmid purification kit | Macherey-Nagel | 740588.25 | |
8 well PCR strip tubes | Axygen | 321-10-551 | |
Qubit dsDNA HS assay kit | Invitrogen | Q32854 | dsDNA quantitation reagent |
Qubit assay tubes | Invitrogen | Q32856 | |
Qubit fluorometer | Invitrogen | Q32866 | |
Ampicillin sodium salt | Akron Biotechnology | 50824296 | |
MiSeq reagent kit v2 (500 cycles) | Illumina | MS-102-2003 | |
MiSeq desktop sequencer | Illumina | http://www.illumina.com/systems/miseq.html | alternatively, one could sequence on Illumina HiSeq platform |
FLASh software | John Hopkins University - open source | http://ccb.jhu.edu/software/FLASH/ | software to merge paired-end reads from next-generation sequencing data |
AatII_F | GATAATAATGGTTTCTTAGACG TCAGGTGGC | ||
AvrII_R | CTTCACCTAGGTCCTTTTAAAT TAAAAATGAAG | ||
AvrII_F | CTTCATTTTTAATTTAAAAGGA CCTAGGTGAAG | ||
AatII_OP1_R | ACCTGACGTCCGTATTTCAAC TGTCCGGTCTAAGAAACCATT ATTATCATGACATTAAC | ||
AatII_OP2_R | ACCTGACGTCCGCTCACGGA GTGTACTAATTAAGAAACCATT ATTATCATGACATTAAC | ||
AatII_OP3_R | ACCTGACGTCGTACGTCTGA ACTTGGGACTTAAGAAACCA TTATTATCATGACATTAAC | ||
AatII_OP4_R | ACCTGACGTCCCGTTCTCGAT ACCAAGTGATAAGAAACCATT ATTATCATGACATTAAC | ||
AatII_OP5_R | ACCTGACGTCGTCCGTCGGA GTAACAATCTTAAGAAACCAT TATTATCATGACATTAAC | ||
OP1_F | GACCGGACAGTTGAAATACG | ||
OP1_R | CGACGTACAGGACAATTTCC | ||
OP2_F | ATTAGTACACTCCGTGAGCG | ||
OP2_R | AGTATTAGGCGTCAAGGTCC | ||
OP3_F | AGTCCCAAGTTCAGACGTAC | ||
OP3_R | GAAAAGTCCCAATGAGTGCC | ||
OP4_F | TCACTTGGTATCGAGAACGG | ||
OP4_R | TATCACGGAAGGACTCAACG | ||
OP5_F | AGATTGTTACTCCGACGGAC | ||
OP5_R | TATAACAGGCTGCTGAGACC | ||
Group1_F | ACACTCTTTCCCTACACGAC GCTCTTCCGATCTNNNNNGC ATTTTGCCTACCGGTTTTTGC | ||
Group1_R | GTGACTGGAGTTCAGACGTG TGCTCTTCCGATCTNNNNNTC TTGCCCGGCGTCAAC | ||
Group2_F | ACACTCTTTCCCTACACGAC GCTCTTCCGATCTNNNNNGA ACGTTTTCCAATGATGAGCAC | ||
Group2_R | GTGACTGGAGTTCAGACGTG TGCTCTTCCGATCTNNNNNGT CCTCCGATCGTTGTCAGAAG | ||
Group3_F | ACACTCTTTCCCTACACGAC GCTCTTCCGATCTNNNNNAG TAAGAGAATTATGCAGTGCTGCC | ||
Group3_R | GTGACTGGAGTTCAGACGTG TGCTCTTCCGATCTNNNNNTC GCCAGTTAATAGTTTGCGC | ||
Group4_F | ACACTCTTTCCCTACACGAC GCTCTTCCGATCTNNNNNCC AAACGACGAGCGTGACAC | ||
Group4_R | GTGACTGGAGTTCAGACGTG TGCTCTTCCGATCTNNNNNGC AATGATACCGCGAGACCC | ||
Group5_F | ACACTCTTTCCCTACACGAC GCTCTTCCGATCTNNNNNCG GCTGGCTGGTTTATTGC | ||
Group5_R | GTGACTGGAGTTCAGACGTG TGCTCTTCCGATCTNNNNNTAT ATGAGTAAACTTGGTCTGACAG | ||
501_F | AATGATACGGCGACCACCGA GATCTACACTATAGCCTACAC TCTTTCCCTACACGAC | ||
502_F | AATGATACGGCGACCACCGA GATCTACACATAGAGGCACA CTCTTTCCCTACACGAC | ||
503_F | AATGATACGGCGACCACCGA GATCTACACCCTATCCTACAC TCTTTCCCTACACGAC | ||
504_F | AATGATACGGCGACCACCGA GATCTACACGGCTCTGAACA CTCTTTCCCTACACGAC | ||
505_F | AATGATACGGCGACCACCGA GATCTACACAGGCGAAGACA CTCTTTCCCTACACGAC | ||
701_R | CAAGCAGAAGACGGCATAC GAGATCGAGTAATGTGACTG GAGTTCAGACGTG | ||
702_R | CAAGCAGAAGACGGCATAC GAGATTCTCCGGAGTGACTG GAGTTCAGACGTG |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved