JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Изготовление Перевернутый коллоидный кристалл поли (этиленгликоль) строительные леса: трехмерная Cell Culture платформа для печени тканевой инженерии

Published: August 27th, 2016

DOI:

10.3791/54331

1School of Materials Science and Engineering, Nanyang Technological University, 2School of Chemical and Biomedical Engineering, Nanyang Technological University

This manuscript presents a detailed protocol for the fabrication of an emerging three-dimensional hepatocyte culture platform, the inverted colloidal crystal scaffold, and the concomitant techniques to assess hepatocyte behavior. The size-controllable pores, interconnectivity and ability to conjugate extracellular matrix proteins to the poly(ethylene glycol) (PEG) scaffold enhance Huh-7.5 cell performance.

Способность поддерживать функцию гепатоцитов в пробирке, для целей тестирования цитотоксичности ксенобиотиков, изучение вирусной инфекции и разработки лекарств , нацеленных на печень, требует платформу , в которой клетки получают соответствующие биохимические и механические сигналы. Последние ткани печени инженерные системы использовали трехмерные (3D) каркасы, состоящие из синтетических или натуральных гидрогели, учитывая их высокую задержку воды и их способность обеспечивать механические стимулы, необходимые клетками. Там было растущий интерес к перевернутой коллоидный кристалл (ICC) эшафот, новейшая разработка, которая обеспечивает высокую пространственную организацию, однотипны и взаимодействие гетеротипичной клеток, а также матрицу взаимодействия (ECM) клеточно-внеклеточный. В данном случае мы опишем протокол для изготовления строительных лесов ICC с использованием поли (этиленгликоль) диакрилат (PEGDA) и метод выщелачивания частиц. Если коротко, то решетка изготовлена ​​из частиц микросфер, после чего предварительно polymeR раствор добавляют, правильно полимеризуется, а частицы затем удаляются, или выщелоченные, с использованием органического растворителя (например, тетрагидрофуран). Растворение результатов решетки в сильно пористом помост с контролируемым размером пор и interconnectivities, которые позволяют медиа достичь клетки более легко. Эта уникальная структура позволяет большую площадь поверхности для клеток придерживаться, а также легкой связи между порами, а также возможность покрыть ICC эшафот PEGDA с белками также показывает заметное влияние на производительность клеток. Мы анализируем морфологии эшафот, а также гепатокарциномой клетки поведения (Хух-7,5) с точки зрения жизнеспособности и функции для изучения влияния структуры ICC и ECM покрытий. В целом, этот документ содержит подробный протокол формирующейся строительных лесов, который имеет широкое применение в тканевой инженерии, особенно печени тканевой инженерии.

Печень является насыщена сосудами орган с множеством функций, в том числе детоксикацию крови, метаболизма ксенобиотиков, а также при производстве сывороточных белков. Ткань печени имеет сложную трехмерную (3D) микроструктуру, состоящий из нескольких типов клеток, желчные канальцы, синусоиды и зон различного состава BIOMATRIX и различных концентраций кислорода. Учитывая эту сложную структуру, было трудно создать правильную модель печени в пробирке 1. Тем не менее, существует растущий спрос на функционал в моделях пробирке хостинг гепатоцитов человека в качестве платформ для тестирования лекарственной токсичности 2 и изу....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. МТП Эшафот Fabrication (Рисунок 1)

  1. Подготовьте полистирол (PS) решетки (диаметр = 6 мм; 8-13 слои шариков).
    1. Чтобы подготовить почву, отрезать кончики от от 0,2 мл кипячения доказательство микропробирок на уровне 40 мкл. Приклейте верхнюю часть срезанных труб до 24 х 60 мм 2 микроскопа п?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Представительные результаты для структурной характеристики эшафота ICC и сравнения эффективности каждого ICC подмости условие в культивировании печеночных клеток показаны и объяснены ниже. Условия подмости МТП, используемые в этих результатов являются коллагеновые ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Тканевая инженерия каркасы быстро развиваются , чтобы обеспечить все физические и биохимические сигналы , необходимые для восстановления, поддержания или ремонта тканей для применения замены органов, изучение болезней, разработки лекарств, и многие другие 57. В печени тканевой и?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Авторы хотели бы выразить признательность поддержку от Национального исследовательского фонда стипендий (NRF -NRFF2011-01) и конкурентоспособных исследований программы (СРН-CRP10-2012-07).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
0.2 mL PCR tubeAxygen ScientificPCR-02D-CBoil-proof
Gorilla GlueGorilla Glue, Inc.Depends on vendor. This was purchased from a local store.
Glass slidesVWR 631-1575Dimensions: 24×60 mm
Polystyrene spheres Fisher ScientificTSS#4314ADiameter = 140 um; 3x10^4 particles per milliliter and 1.4% size distribution
EthanolMerck1.00983.1011absolute for analysis EMSURE; Dilute to 70% with Milli-Q water
Ultrasonic BathElmaS10HEquiment
FurnaceNaberthermN7/HEquipment
200 µL pipette tipAxygen ScientificT-210-Y-R-S
Rocking shakerVWR444-0142
Polyethylene Glycol (PEG)Merck1.09727.0100Mw= 4kDa; acrylation of PEG monomers and purification of the resulting precipitate produces a PEGDA macromer with Mw = 4.6kDa
CentrifugeBeckman Coulter392932Equipment
Acrylate-Poly (Ethylene Glycol) - Succinimidyl Valerate Laysan BioACRL-PEG-SVA-3400-1gMw = 3.4 kDa
2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenoneSigma Aldrich410896
VortexVWR58816-123Equipment
MicrocentrifugeEppendorf5404 000.413
Paraffin Film Parafilm M #PM996Kept at 9" with allows intensity of 10.84 mW/cm^2
Bluewave 200 UV spotlightBlaze Technology 120008, 122300
Tetrahydrofuran (THF)Merck107025
Orbital shakerHeidolph543-123120-00-5From rat
Collagen Type ISigma AldrichC3867-1VL1X, w/o CaCl & MgCl; Ph = 7.2
Phosphate Buffered Saline (PBS) Gibco20012-02716% W/V AQ. 10x10ml
ParaformaldehydeVWR43368.9MEquipment
Freezone 4.5 freeze drierLabconco7750020Equipment
Sputter coaterJeol Ltd.JFC-1600Equipment
Scanning Electron MicroscopeJeol Ltd.JSM 5310
Anti-mouse primary antibodies against Collagen type IAbcamab6308
Anti-mouse secondary antibody conjugated with Alexa Fluor 488Life TechnologiesA21121
Plate, Tissue Culture 24 Well, Flat Bottom (Nunclon) Bio-Rev PTE LTD3820-024
Dulbecco's Modified Eagle's Medium(DMEM)
2.5 g/L Glucose w/ L-Gln
Lonza12-604F
Fetal Bovine Serum (FBS)GibcoA15-151
Penicillin-Streptomycin (P/S)Life Tchnologies15140-122 E
APC49‐Huh ‐7.5 Cell LineApath
100 mm Corning non-treated culture dishesSigma AldrichCLS430591
0.25% Trypsin-EDTAGibco25200-056Equipment; 37°C, 5% Humidity
Forma Steri-Cycle CO2 IncubatorsThermofisher Scientific371
Hausser Bright-Line Phase HemacytometerThermofisher Scientific02-671-6
Live/Dead Viability/Cytotoxicity Kit 'for mammalian cellsLife TechnologiesL3224 
CCK-8 AssayDojindo LaboratoriesCK04-11Monosodium-salt reagent (MSR)
Infinite 200 PRO microplate reader Tecan
Albumin Human ELISA kitAbcamab108788
Triton X-100Bio-Rad#1610407
Bovine Serum Albumin (BSA)Sigma-AldrichA2153-50G
Anti-mouse primary antibodies (against CYP3A4, albumin)Santa Cruz Biotechnologysc-53850; sc-271605
DAPILife TechnologiesD3571
Alexa Fluor 555 labelled PhalloidinLife TechnologiesA34055
TrizolLife Technologies15596-026
ChloroformVWR22706.326
IsopropanolFisher Scientific67-63-0
DPEC waterThermofisher ScientificAM9916
Nanodrop 2000c SpectrophotometerThermofisher ScientificND-2000
iScript Reverse Transcription Supermix Bio-Rad Laboratories1708840
SYBR select Master Mix for CFXLife Technology4472937
Primers (to be chosen)
CFX96 Real-Time System, C-1000 Touch Thermal CyclerBio Rad LaboratoriesSOFT-CFX-31-PATCH 

  1. Yamada, M., et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 33 (33), 8304-8315 (2012).
  2. Abboud, G., Kaplowitz, N. Drug-induced liver injury. Drug Safety. 30 (4), 277-294 (2007).
  3. Cho, N. J., et al. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomed Mater. 4 (1), (2009).
  4. Revzin, A., et al. Designing a hepatocellular microenvironment with protein microarraying and poly (ethylene glycol) photolithography. Langmuir. 20 (8), 2999-3005 (2004).
  5. Sato, A., Kadokura, K., Uchida, H., Tsukada, K. An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Bioph Res Com. 453 (4), 767-771 (2014).
  6. Domansky, K., et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip. 10 (1), 51-58 (2010).
  7. Hegde, M., et al. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip. 14 (12), 2033-2039 (2014).
  8. Flaim, C. J., Chien, S., Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat methods. 2 (2), 119-125 (2005).
  9. Underhill, G. H., Chen, A. A., Albrecht, D. R., Bhatia, S. N. Assessment of hepatocellular function within PEG hydrogels. Biomaterials. 28 (2), 256-270 (2007).
  10. Dunn, J., Tompkins, R. G., Yarmush, M. L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J cell biol. 116 (4), 1043-1053 (1992).
  11. Dunn, J. C., Tompkins, R. G., Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol progr. 7 (3), 237-245 (1991).
  12. Ling, Y., et al. A cell-laden microfluidic hydrogel. Lab Chip. 7 (6), 756-762 (2007).
  13. Kim, M., Lee, J. Y., Jones, C. N., Revzin, A., Tae, G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 31 (13), 3596-3603 (2010).
  14. Kotov, N. A., et al. Inverted Colloidal Crystals as Three-Dimensional Cell Scaffolds. Langmuir. 20 (19), 7887-7892 (2004).
  15. Shanbhag, S., Woo Lee, J., Kotov, N. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. Biomaterials. 26 (27), 5581-5585 (2005).
  16. Lee, Y. H., Huang, J. R., Wang, Y. K., Lin, K. H. Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature. Integr Biol. 5, 1447-1455 (2013).
  17. da Silva, J., Lautenschlager, F., Kuo, C. H. R., Guck, J., Sivaniah, E. 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integr Biol. 3, 1202-1206 (2011).
  18. da Silva, J., Lautenschlager, F., Sivaniah, E., Guck, J. R. The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials. 31, 2201-2208 (2010).
  19. Lee, J., Lilly, G. D., Doty, R. C., Podsiadlo, P., Kotov, N. A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small. 5, 1213-1221 (2009).
  20. Lee, J., Kotov, N. A. Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small. 5, 1008-1013 (2009).
  21. Liu, Y., et al. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. J Biomed Mater Res. Part A. 83, 1-9 (2007).
  22. Ma, P. X., Choi, J. W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7, 23-33 (2001).
  23. Cuddihy, M. J., Kotov, N. A. Poly (lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Eng Part A. 14, 1639-1649 (2008).
  24. Choi, S. W., Zhang, Y., Xia, Y. Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure. Langmuir. 26, 19001-19006 (2010).
  25. Choi, S. W., Zhang, Y., Thomopoulos, S., Xia, Y. In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir. 26, 12126-12131 (2010).
  26. Choi, S. W., Zhang, Y., Macewan, M. R., Xia, Y. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv Healthc Mater. 2, 145-154 (2013).
  27. Zhang, Y., Choi, S. W., Xia, Y. Modifying the Pores of an Inverse Opal Scaffold With Chitosan Microstructures for Truly Three-Dimensional Cell Culture. Macromol Rapid Commun. 33, 296-301 (2012).
  28. Cai, X., et al. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng. Part C, Meth. 19, 196-204 (2013).
  29. Zhang, Y. S., Yao, J., Wang, L. V., Xia, Y. Fabrication of Cell Patches Using Biodegradable Scaffolds with a Hexagonal Array of Interconnected Pores (SHAIPs). Polymer. 55, 445-452 (2014).
  30. Zhang, Y. S., Regan, K. P., Xia, Y. Controlling the Pore Sizes and Related Properties of Inverse Opal Scaffolds for Tissue Engineering Applications. Macromol Rapid Commun. 34, 485-491 (2013).
  31. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E., Irvine, D. J. Bioactive Hydrogels with an Ordered Cellular Structure Combine Interconnected Macroporosity and Robust Mechanical Properties. Adv Mater. 17, 399-403 (2005).
  32. Stachowiak, A. N., Irvine, D. J. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res. Part A. 85, 815-828 (2008).
  33. Liu, Y., Wang, S. 3D inverted opal hydrogel scaffolds with oxygen sensing capability. Colloids and surfaces. B, Biointerfaces. 58, 8-13 (2007).
  34. Bryant, S. J., Cuy, J. L., Hauch, K. D., Ratner, B. D. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 28, 2978-2986 (2007).
  35. Bhrany, A. D., Irvin, C. A., Fujitani, K., Liu, Z., Ratner, B. D. Evaluation of a sphere-templated polymeric scaffold as a subcutaneous implant. JAMA facial plastic surgery. 15, 29-33 (2013).
  36. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32 (3), 819-831 (2011).
  37. Yang, J. T., Kuo, Y. C., Chiu, K. H. Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury. Colloids Surf. B, Biointerfaces. 84, 198-205 (2011).
  38. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  39. Choi, S. W., Xie, J., Xia, Y. Chitosan-Based Inverse Opals: Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Adv Mater. 21, 2997-3001 (2009).
  40. Long, T. J., Sprenger, C. C., Plymate, S. R., Ratner, B. D. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Biomaterials. 35, 8164-8174 (2014).
  41. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  42. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32, 819-831 (2011).
  43. Lee, J., Cuddihy, M. J., Cater, G. M., Kotov, N. A. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials. 30 (27), 4687-4694 (2009).
  44. Galperin, A., et al. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater. 2, 872-883 (2013).
  45. Waters, D. J., et al. Morphology of Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering. Macromolecules. 43 (16), 6861-6870 (2010).
  46. Elbert, D. L., Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules. 2 (2), 430-441 (2001).
  47. Kim, M. H., et al. Biofunctionalized Hydrogel Microscaffolds Promote Three-Dimensional Hepatic Sheet Morphology. Macromol Biosci. , (2015).
  48. Ferreira, T., Rasband, W. . ImageJ User Guide. , (2012).
  49. JoVE Science Education Database. . General Laboratory Techniques. Introduction to Fluorescence Microscopy. , (2015).
  50. Tominaga, H., et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 36 (2), 47-50 (1999).
  51. JoVE Science Education Database. . General Laboratory Techniques. Introduction to the Microplate Reader. , (2015).
  52. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. The ELISA Method. , (2015).
  53. Nolan, T., Hands, R. E., Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 1, 1559-1582 (2006).
  54. JoVE Science Education Database. . Essentials of Environmental Microbiology. RNA Analysis of Environmental Samples Using RT-PCR. , (2016).
  55. JoVE Science Education. . Essentials of Environmental Microbiology. , (2015).
  56. Jeong, S., et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell. 132 (5), 783-793 (2008).
  57. Griffith, L. G., Naughton, G. Tissue engineering--current challenges and expanding opportunities. Science. 295 (5557), 1009-1014 (2002).
  58. Hegde, M., et al. Dynamic Interplay of Flow and Collagen Stabilizes Primary Hepatocytes Culture in a Microfluidic Platform. Lab Chip. 14, 2033-2039 (2014).
  59. Kim, Y., Lasher, C. D., Milford, L. M., Murali, T., Rajagopalan, P. A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Pt C. 16 (6), 1449-1460 (2010).
  60. Baimakhanov, Z., et al. Efficacy of multi-layered hepatocyte sheet transplantation for radiation-induced liver damage and partial hepatectomy in a rat model. Cell Transplant. , (2015).
  61. Li, C. Y., et al. Micropatterned Cell-Cell Interactions Enable Functional Encapsulation of Primary Hepatocytes in Hydrogel Microtissues. Tissue Eng Pt A. 20 (15-16), 2200-2212 (2014).
  62. Shlomai, A., et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. P Natl A Sci USA. 111 (33), 12193-12198 (2014).
  63. Curcio, E., et al. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 28, 5487-5497 (2007).
  64. Martinez-Hernandez, A., Amenta, P. The hepatic extracellular matrix. Vichows Archiv A Pathol Anat. 423, 1-11 (1993).
  65. Liu, Y., Wang, S., Lee, J. W., Kotov, N. A. A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. Chem Mater. 17 (20), 4918-4924 (2005).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved