A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article provides a detailed description on the fabrication process of a high contact-density flat interface nerve electrode (FINE). This electrode is optimized for recording and stimulating neural activity selectively within peripheral nerves.
Many attempts have been made to manufacture multi-contact nerve cuff electrodes that are safe, robust and reliable for long term neuroprosthetic applications. This protocol describes a fabrication technique of a modified cylindrical nerve cuff electrode to meet these criteria. Minimum computer-aided design and manufacturing (CAD and CAM) skills are necessary to consistently produce cuffs with high precision (contact placement 0.51 ± 0.04 mm) and various cuff sizes. The precision in spatially distributing the contacts and the ability to retain a predefined geometry accomplished with this design are two criteria essential to optimize the cuff's interface for selective recording and stimulation. The presented design also maximizes the flexibility in the longitudinal direction while maintaining sufficient rigidity in the transverse direction to reshape the nerve by using materials with different elasticities. The expansion of the cuff's cross sectional area as a result of increasing the pressure inside the cuff was observed to be 25% at 67 mm Hg. This test demonstrates the flexibility of the cuff and its response to nerve swelling post-implant. The stability of the contacts' interface and recording quality were also examined with contacts' impedance and signal-to-noise ratio metrics from a chronically implanted cuff (7.5 months), and observed to be 2.55 ± 0.25 kΩ and 5.10 ± 0.81 dB respectively.
Interfacing with the peripheral nervous system (PNS) provides access to highly-processed neural command signals as they travel to different structures within the body. These signals are generated by axons confined within fascicles and surrounded by tightly-jointed perineurium cells. The magnitude of the measurable potentials resulting from the neural activities is affected by the impedance of the various layers within the nerve such as the highly resistive perineurium layer that surrounds the fascicles. Consequently, two interface approaches have been explored depending on the recording location with respect to the perineurium layer, namely intrafascicular and extrafascicular approaches. Intra-fascicular approaches place the electrodes inside the fascicles. Examples of these approaches are the Utah array17, the Longitudinal Intra-fascicular Electrode (LIFE)18, and the transverse intra-fascicular multichannel electrode (TIME)32. These techniques can record selectively from the nerve but have not been shown to reliably retain functionality for long periods of time in vivo, likely due to the size and the compliance of the electrode12.
Extra-fascicular approaches place the contacts around the nerve. The cuff electrodes used in these approaches do not compromise the perineurium nor the epineurium and have been shown to be both a safe and robust means of recording from the peripheral nervous system12. However, extra-fascicular approaches lack the ability to measure single unit activity — compared to intra-fascicular designs. Neuroprosthetic applications that utilize nerve cuff electrodes include activation of the lower extremity, the bladder, the diaphragm, treatment of chronic pain, block of neural conduction, sensory feedback, and recording electroneurograms1. Potential applications to utilize peripheral nerve interfacing include restoring movement to victims of paralysis with functional electrical stimulation, recording motor neuron activity from residual nerves to control powered limb prostheses in amputees, and interfacing with the autonomic nervous system to deliver bio-electronic medicines20.
A design implementation of the cuff electrode is the flat-interface nerve electrode (FINE)21. This design reshapes the nerve into a flat-cross section with larger circumference compared to a round shape. The advantages of this design are increased number of contacts that can be placed on the nerve, and the close proximity of the contacts with the rearranged internal fascicles for selective recording and stimulation. Furthermore, upper and lower extremity nerves in large animals and human can take various shapes and the reshaping generated by the FINE does not distort the natural geometry of the nerve. Recent trials have shown that FINE is capable of restoring sensation in the upper extremity16 and restoring movement in the lower extremity22 with functional electrical stimulation in humans.
The basic structure of a cuff electrode consists of placing several metal contacts on the surface of a nerve segment, and then insulating these contacts along with the nerve segment within a nonconductive cuff. To achieve this basic structure, several designs have been proposed in previous studies including:
(1) Metal contacts embedded into a Dacron mesh. The mesh is then wrapped around the nerve and the resulting cuff shape follows the nerve geometry4, 5.
(2) Split-cylinder designs which use pre-shaped rigid and non-conductive cylinders to fix the contacts around the nerve. The nerve segment that receives this cuff is reshaped into the cuff's internal geometry6-8.
(3) Self-coiling designs where the contacts are enclosed between two insulation layers. The internal layer is fused while stretched with an external un-stretched layer. With different natural resting lengths for the two bonded layers causes the final structure to form a flexible spiral that wraps itself around the nerve. The material used for these layers have typically been polyethylene9 polyimide10, and silicone rubber1.
(4) Uninsulated segments of the lead wires placed against the nerve to serve as the electrode contacts. These leads are either woven into silicone tubing11 or molded in silicone nested cylinders12. A similar principle was used to construct FINEs by arranging and fusing insulated wires to form an array, and then an opening through the insulation is made by stripping a small segment through the middle of these joined wires13. These designs assume a round nerve cross section and conform to this assumed nerve geometry.
(5) Flexible polyimide based electrodes33 with contacts formed by micromachining polyimide structure, and then integrating into stretched silicone sheets to form self-coiling cuffs. This design also assumes a round nerve cross section.
Cuff electrodes should be flexible and self-sizing in order to avoid stretching and compressing the nerve that can cause nerve damage3. Some of the known mechanisms by which cuff electrodes can induce these effects are the transmission of forces from adjacent muscles to the cuff and hence to the nerve, mismatch between the cuff's and nerve's mechanical properties, and the undue tension in the cuff's leads. These safety issues lead to specific set of design constraints on the mechanical flexibility, geometric configuration, and size1. These criteria are particularly challenging in the case of a high contact count FINE because the cuff must be at the same time stiff in the transverse direction to reshape the nerve and flexible in the longitudinal direction to prevent damage as well as accommodating multiple contacts. Self-sizing spiral designs can accommodate multiple contacts cuff14, but the resulting cuff is somewhat rigid. Flexible polyimide design can accommodate a high number of contacts but are prone to delamination. The wire array design13 produces a FINE with flat cross section, but in order to retain this geometry the wires are fused together along the length of the cuff producing stiff faces and sharp edges making then unsuitable for long term implants.
The fabrication technique described in this article produces a high contact density FINE with flexible structure that can be made by hand with consistently high precision. It uses a rigid polymer (Polyether ether ketone (PEEK)) to allow precise placement of the contacts. The PEEK segment maintains a flat cross section at the center of the electrode while remaining flexible in the longitudinal direction along the nerve. This design also minimizes the overall thickness and stiffness of the cuff since the electrode body does not have to be rigid in order to flatten the nerve or secure the contacts.
1. Electrode Components Preparation
2. Contacts Array Preparation
3. Cuff Layout Guide
4. Electrode Base Layer and Reference Contacts Placement
5. Center Contacts Array Placement
6. Embedding the Electrode Components
7. Shielding Layer Placement (Recommended for Recording Cuffs)
8. Cutting out the Finished Electrode
9. Exposing Contacts and Shielding Layers
10. Soldering a Connector to the Leads
Recording neural activity was performed with a customized pre-amplifier using super-β input instrumentation amplifier (700 Hz - 7 kHz bandwidth and total gain of 2,000). An example of the fabricated FINE electrode with the presented protocol is shown in Figure 3. Implanting the FINE around the nerve is done by suturing the two free edges together. A demonstration of the cuff's flexibility (Figure 3B) indicates that the cuff flattens the nerve while retaining flexibility in the l...
The manufacturing method described in this article requires dexterous and fine movements in order to ensure the quality of the final cuff. The recording contacts must be placed precisely in the middle of the two reference electrodes. This placement has been shown to significantly reduce interferences from surrounding muscles electrical activity27. Any imbalance in the relative position of the contact during the fabrication can degrade the rejection of common mode interfering signals generated outside the cuff....
The authors declare that they have no competing financial interests. The suppliers listed in this manuscript are provided for reference only.
This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy and Dr. Doug Weber through the Space and Naval Warfare Systems Center, Pacific Grant/Contract No.N66001-12-C-4173. We would like to thank Thomas Eggers for his help in the fabrication process, and Ronald Triolo, Matthew Schiefer, Lee Fisher and Max Freeburg for their contribution in the development of the composite nerve cuff design.
Name | Company | Catalog Number | Comments |
Platinum-Iridium foil | Alfa Aesar | 41802 | 90%Platinum Iridium |
DFT wires | Fort Wayne Metals | 35N LT-DFT-28%Ag | |
Lead connector | Omnetics Connector Corporation | MCS-27-SS | |
Silicone sheet | Speciality Silicon Fabricator | 0.005"x12"x12" Silicone Sheet | High durometer, vulcanized |
Polyether ether ketone (PEEK) sheet | Peek-Optima | 0.005 sheet LT3 grade | |
polyester stabelizing mesh | Surgicalmesh | PETKM2002 | |
Silicon tubing (0.04" I.D. 0.085" O.D.) | Silcon Medical/NewAge Industries. | 2810458 | |
Outer shielding layer | Alfa Aesar, A Johnson Matthey | MFCD00003436 (11391) | Gold foil, 0.004" thick |
Transparency sheet | APOLLO | APOCG7060 | |
Ultrasonic bath cleaner | Terra Universal | 2603-00A-220 | |
Isotemp standard lab oven | Fisher Scientific | 13247637G | |
Optical microscope | Fisher Scientific | 15-000-101 | |
Tweezers | Technik | 18049USA (2A-SA) | |
Surgical blade handles | Aspen Surgical Products | 371031 | |
Base frame | McMaster-Carr | 9785K411 | |
Support beam | McMaster-Carr | 9524K359 | |
Two parts silicone | Nusil | MED 4765 | |
Soldering Flux | SRA Soldering Products | FLS71 | |
Tape | 3M Healthcare | 1535-0 (SKUMMM15350H) | Paper, hypoallergenic surgical tape |
Spot welding machine | Unitek | 125 Power Supply with 101F Welding Head | |
Laser cutting platform | Universal Laser Systems | PLS6.150D | 150 watts laser |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved