JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Assays to Detect UV-reflecting Structures and Determine their Importance in Mate Preference using the Sailfin Molly Poecilia latipinna

Published: September 14th, 2016

DOI:

10.3791/54453

1Department of Zoology, Ohio Wesleyan University, 2Department of Ecology, Evolution, & Behavior, University of Minnesota

This protocol outlines the use of spectrophotometry to detect ultraviolet-reflecting structures on organisms (in this example, the sailfin molly Poecilia latipinna) and describes dichotomous choice tests for fish that allow inferences to be made on the role of ultraviolet cues during mate selection.

Many organisms use cues and signals beyond human sensitivity during social interactions. It is important to take into account how organisms perceive their worlds when trying to understand their behavior and ecology. Sensitivity to the ultraviolet spectrum (UV; 300 - 400 nm) is found across multiple genera of birds, fish, reptiles, amphibians, and even mammals. This protocol describes a technique for examining organisms for the presence of UV-reflecting structures and a method for testing whether these cues are used as social signals in the context of mate choice. A spectrophotometer is used to detect the presence of UV reflectance and variation in reflective intensity between individuals and sexes. An example of this technique is presented in which a dichotomous mate choice test exposes sexually receptive individuals to opposite sex individuals whose visual appearance can be manipulated by filters that either transmit full spectrum or block UV wavelengths. This system allowed for the determination that female, but not male, sailfin mollies (Poecilia latipinna) were using UV markings as part of their mating decisions. These types of studies serve to expand our knowledge of the range of organisms that utilize UV and provide insight into how UV plays a role in their lives.

Understanding the cues and signals used in animal social interactions allows us to comprehend the phenotypic variation both within and among species. This variation plays an important role in evolutionary processes such as population divergence, sexual selection, and speciation. Often, however, researchers are limited to exploring the cues most obvious to human sensory systems, especially those within the visual or auditory realms. Use of spectrophotometry, however, allows us to expand our investigations beyond the human visible spectrum and into wavelengths that may be important in social interactions in other species.

In particular, the s....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experiments were conducted with the approval of Ohio Wesleyan University's Institutional Animal Care and Use Committee.

1. Recording UV Reflectance of Fish using a Spectrophotometer

  1. Calibrate a spectrophotometer and light source with a known white standard over the range of wavelengths to be measured according the recommendations of the instrument or software.
  2. Anesthetize fish by placing in a 0.5% solution of ethyl 3-aminobenzoate methane sulfonic acid salt (MS-222) buffered with an e.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figures 1 and 2 show the mating preference aquarium set up and UV measurement sites for our experiments.

Measuring UV reflectance allowed for the determination that P. latipinna do possess UV characteristics, especially along the sides of their bodies (Figure 3), in addition to individual variation in these traits. Once UV traits were found, testing revealed that female.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Spectrophotometry was successful in identifying UV markings on P. latipinna. Both sexes of P. latipinna possess UV markings along their sides. In addition, some males had UV markings on their dorsal fins, traits previously found to be important in female mating preferences7.

We recommend using UV spectrophotometry as a mechanism to detect the presence of UV markings. Further testing could determine its role in social interactions, including mating preference (as de.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We are grateful to anonymous reviewers for comments and suggestions that greatly improved this manuscript. We thank R. Bowes, R. Carreno, and T. Panhuis for assistance in collecting the fish. We also thank M. Lee for assistance with male preference trials. We are grateful to the Ohio Wesleyan University Department of Zoology for helpful advice and suggestions throughout this study and Arizona State University (McGraw Lab) for software advice.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Spectrophotometer, P1000 Ocean Optics newer models are availabe
DT 1000 xenon UV light source Ocean Optics newer models are availabe
Ocean Optics Overture Software Ocean Optics newer software is available
R200-Angle-UV bifurcated fiber-optic probe (Guided Wave) Ocean Optics newer models are availabe
Certified reflectance standard, white labsphere
75.7 L Aquarium, divided Experimental Builder
Full Spectrum Bulb Nature's Sunlight
UV blocking sheet GAM UV Sheet

  1. Endler, J. A., Zaret, T. M. Natural and sexual selection on color patterns in poeciliid fishes. Evolutionary ecology of neotropical freshwater fishes. , 95-111 (1984).
  2. Cummings, M. E., Rosenthal, G. G., Ryan, M. J. A private ultraviolet channel in visual communication. Proc. R. Soc. Lond. [Biol]. 270 (1518), 897-904 (2003).
  3. Siebeck, U. E., Parker, A. N., Sprenger, D., Mäthger, L. M., Wallis, G. A Species of Reef Fish that Uses Ultraviolet Patterns for Covert Face Recognition. Curr. Biol. 20 (5), 407-410 (2010).
  4. Hrbek, T., Seckinger, J., Meyer, A. A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Mol. Phylogenet. Evol. 43 (3), 986-998 (2007).
  5. Körner, K. E., Schlupp, I., Plath, M., Loew, E. R. Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J. Fish Biol. 69 (1), 54-65 (2006).
  6. Farr, J. A., Travis, J. Fertility Advertisement by Female Sailfin Mollies, Poecilia latipinna (Pisces: Poeciliidae). Copeia. 1986 (2), 467-472 (1986).
  7. Ptacek, M. B., Travis, J. Mate Choice in the Sailfin Molly, Poecilia latipinna. Evolution. 51 (4), 1217-1231 (1997).
  8. Ptacek, M., Grier, H. J., Uribe, M. C. Mating signal divergence, sexual selection and species recognition in mollies (Poeciliidae: Poecilia: Mollienesia). Proceedings from the Second International Symposium on Livebearing Fishes. , 71-87 (2005).
  9. MacLaren, R. D. The effects of male proximity, apparent size, and absolute size on female preference in the sailfin molly, Poecilia latipinna. Behavior. 143 (12), 1457-1472 (2006).
  10. Palmer, M. S., Hankison, S. J. Use of ultraviolet cues in female mate preference in the sailfin molly, Poecilia latipinna. Acta Ethol. 18 (2), 153-160 (2014).
  11. Wagner, W. E. Measuring female mating preferences. Anim. Behav. 55 (4), 1029-1042 (1998).
  12. Rémy, A., Grégoire, A., Perret, P., Doutrelant, C. Mediating male-male interactions: the role of the UV blue crest coloration in blue tits. Behav. Ecol. Sociobiol. 64 (11), 1839-1847 (2010).
  13. Guillermo-Ferreira, R., Therézio, E. M., Gehlen, M. H., Bispo, P. C., Marletta, A. The Role of Wing Pigmentation, UV and Fluorescence as Signals in a Neotropical Damselfly. J. Insect Behav. 27 (1), 67-80 (2013).
  14. Ord, T. J., Stamps, J. A., Losos, J. B. Convergent evolution in the territorial communication of a classic adaptive radiation: Caribbean Anolis lizards. Anim. Behav. 85 (6), 1415-1426 (2013).
  15. Siebeck, U. E., Witzany, G. Communication in the Ultraviolet: Unravelling the Secret Language of Fish. Biocommunication of Animals. , 299-320 (2014).
  16. Modarressie, R., Rick, I. P., Bakker, T. UV matters in shoaling decisions. Proc. Biol. Sci. 273 (1588), 849-854 (2006).
  17. Lim, M. L. M., Li, J., Li, D. Effect of UV-reflecting markings on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behav. Ecol. 19, 61-66 (2008).
  18. Rick, I. P., Bakker, T. Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others?. BMC Evol. Biol. 8, 189 (2008).
  19. Siebeck, U. E. Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim. Behav. 68 (2), 273-282 (2004).
  20. Cummings, M. E., De Leòn, F. J. G., Mollaghan, D. M., Ryan, M. J. Is UV ornamentation an amplifier in swordtails?. Zebrafish. 3, 91-100 (2006).
  21. Macìas Garcia, c., de Perera, T. Ultraviolet-based female preferences in a viviparous fish. Behav. Ecol. Sociobiol. 52 (1), 1-6 (2002).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved