A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This paper presents an impedance-based apparatus for evaporation rate detection of solutions. It offers clear advantages over a conventional weight loss approach: a fast response, high-sensitivity detection, a small sample requirement, multiple sample measurements, and easy disassembly for cleaning and reuse purposes.
This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.
Evaporation is a type of liquid vaporization and occurs along the gas-liquid interface of a collective body of water. The water molecules near the surface become capable of escaping from the liquid due to collision of water molecules. The evaporation rate is an important key factor during the process of evaporation. Generally, a balance or volumetric tube1-3 is widely-used to detect the evaporation of solutions. However, it takes a long time to measure the evaporation rate due to the precision limitation of a balance or a volumetric tube. For this reason, a responsive and high-sensitivity instrument must be developed to probe into the details of the evaporation process.
Electrochemical impedance spectroscopy (EIS) is a fast-response, sensitive and effective experimental means in terms of in-situ impedance detection for electrochemical system characterization4. Therefore, EIS can be applied in various fields, such as recent studies on cellular behavior5, bioanalytical sensing6-7, electrolysis8, conducting polymers9, and electrochemical extraction10. Even though EIS systems had successfully been applied in a wide variety of disciplines, there exist an extremely small number of publications on its application to evaporation research.
Hyaluronic acid, a high molecular weight polysaccharide with strong water-binding potential, is a well-known humectant for cosmetic applications. One hyaluronic acid molecule can bind up to 500 water molecules11 and reach 1,000 times its original volume12. An extremely small amount of hyaluronic acid can possess moisturizing function13-14. Due to the high moisture retention, hyaluronic acid has become an important component of cosmetic humectant products with high commercial value worldwide15.
This study presents the method of a novel impedance-based apparatus featuring high speed detection, small volume sample requirement, and multiple sample measurements16-19. It is presented with a focus on the relative evaporation rate comparison among solutions as a way to validate the superiority of the innovative detection mechanism over a conventional weighing manner.
1. Experimental Chip Module
Figure 1: ITO electrode chip. The fabricated ITO chip with 8 pairs of electrode-patterned routes is shown. There are 15 electrodes measuring 2 mm x 8 mm at the side edge, and the central two routes share the same electrode. The distance between each pair of electrode fingers in a test well is 7 mm. Please click here to view a larger version of this figure.
Figure 2: Silicone well array. The commercial 8-well silicone array can hold 8 tested samples simultaneously. The size of each well is 11 mm x 8 mm x 8.5 mm (L x W x H). Please click here to view a larger version of this figure.
Figure 3: Experimental chip module. The ITO electrode chip is attached with the 8-well silicone array to form the experimental chip module. The adhesion between the silicone array and the ITO chip is strong. Therefore, the silicone array and the ITO chip can bond together for use without any adhesive substance. Please click here to view a larger version of this figure.
2. Impedance Measurement
Figure 4: Schematic of the impedance-based apparatus. The lock-in amplifier, switch relay, and personal computer comprise the impedance readout module. The commercial phase-sensitive lock-in amplifier is used to send and extract the electrical signals. The homemade switch relay circuit connecting various ITO chips is used to specify which well and which ITO chip to be tested. A total of 6 chips can be connected to the switch relay specifying 48 samples in a time sharing manner. The real-time in-phase resistance and the signal phase shift of the tested solution are recorded continuously on a personal computer for the whole evaporation process. Please click here to view a larger version of this figure.
3. Evaporation Experiments
During the evaporation process, the conductive ions in the tested solution became concentrated with the decreasing solution volume, and the impedance of this solution decreased. The rates of weight loss and impedance decrease in the evaporation progress for each tested solution were measured. For comparison purposes, the data in the rates of weight loss and impedance decrease were normalized to water and then plotted together in Figure 5. As illustrated in Figure 5, the weight loss demon...
The critical step for evaporation measurement in this impedance-based detection is the preparation of the tested solutions. Deionized water cannot be used due to its enormous impedance. Instead, tap water containing conductive ions was used to prepare hyaluronic acid solutions for experiments. However, the electrical properties of tap water were not constant for use. Therefore, normalization, such as the relative evaporation rate to water in this study, was adopted as an alternative index for...
The authors have nothing to disclose.
This work was sponsored by the Ministry of Science and Technology, Taiwan, under grant numbers MOST 104-2221-E-241-001-MY3 and MOST 105-2627-B-005-002.
Name | Company | Catalog Number | Comments |
95% ethanol | Echo Chemical Co., Ltd., Miaoli, Taiwan | 484000001103C-00EC | |
Acetone | Avantor Performance Materials Inc., Center Valley, PA, USA | JTB-9005-68 | |
Development solution | Kemitek Industrial Crop., Hsinchu, Taiwan | 12F01031 | KTD-1 |
Etching solution | eSolv Technology Co., Taipei, Taiwan | EG-462 | |
Hyaluronic acid | Shandong Freda Biopharm Co., Ltd., Jinan, China | 1010212 | Molecular weight 980k, Cosmetic Grade |
Photoresist solution | AZ Electronic Materials Taiwan Co., Ltd., Hsinchu, Taiwan | 65101M19 | AZ6112 |
8-well silicone array | Greiner bio-one Inc., Frickenhausen, Baden-Württemberg, Germany | FlexiPERM | |
ITO glass | GemTech Optoelectronics Co., Taoyuan, Taiwan | ||
Vial | Sigma-Aldrich Co. LLC., St. Louis, MO, USA | 854190 | |
Film photomask | Taiwan Mesh Co., Ltd, Taoyuan, Taiwan | ||
Lock-in amplifier | Stanford Research Systems, Inc., Palo Alto, CA, USA | SR830 | |
Switch relay | Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan | ||
Electronic balance machine | Radwag Inc., Radom, Poland | AS 60/220/C/2 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved