A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a parametric driving method to cool an ultracold Fermi gas in a crossed-beam optical dipole trap. This method selectively removes high-energy atoms from the trap by periodically modulating the trap depth with frequencies that are resonant with the anharmonic components of the trapping potential.
We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.
In the past two decades, various cooling techniques have been developed for generating Bose-Einstein condensates (BEC) and degenerate Fermi gases (DFG) from hot atomic vapors1,2,3,4,5. BEC and DFG are novel phases of matter that exist in extremely low temperatures, usually one millionth of a degree above absolute zero temperature, far below those normally found on Earth or in space. To obtain such low temperatures, most cooling methods rely on lowering the trapping potential to evaporatively cool the atoms. However, the lowering scheme also decreases the collision rate of the atoms, which limits the cooling efficiency when the gas reaches the quantum regime6. In this article, we present an "expelling" method to evaporatively cool an ultracold Fermi gas in an ODT without lowering the trap depth. This method is based on our recent study of parametric cooling7, showing several advantages compared to the lowering schemes7,8,9.
The key idea of the parametric scheme is to employ the anharmonicity of the crossed-beam ODT, which makes the hotter atoms near the edge of the trapping potential feel the lower trapping frequencies than the colder atoms in the center. This anharmonicity allows the hotter atoms to be selectively expelled from the trap when modulating the trapping potential at frequencies resonant with the high-energy atoms.
The experimental protocol of parametric cooling requires a pre-cooled noninteracting Fermi gas near the degenerate temperature. To implement this protocol, an acousto-optic modulator (AOM) is used to modulate the intensity of the trapping beams by controlling the modulation frequency, depth and time. To verify the cooling effect, the atomic cloud is probed by absorption imaging of time-of-flight (TOF), where a resonant laser beam illuminates the atomic cloud and the absorption shadow is captured by a charge coupled device (CCD) camera. The cloud properties, such as the atom number, energy, and temperature, are determined by the column density. To characterize the cooling effect, we measure the dependence of the cloud energies on the various modulation times.
NOTE: This protocol requires a home-built ultracold atom apparatus including the following equipment: two external cavity diode lasers (ECDL), a locking setup for the ECDL offset frequency locking10, a fiber laser for the ODT, an AOM for laser intensity modulation, an radio frequency (rf) antenna system with a source generator and a power amplifier, an absorption imaging system with a CCD camera, a computer program for timing sequence and data acquisition (DAQ), a computer program for imaging processing and data analysis, a pair of electromagnets for the MOT and bias magnetic fields, and an ultrahigh vacuum chamber including a 6Li vapor oven and a Zeeman slower (shown in Figure 1).
Caution: Three lasers of different powers and wavelengths are used. Please consult the relevant laser safety data sheets and choose the proper laser safety goggles.
1. Timing Control
NOTE: All timing sequences are controlled by a 128 channel PCI DAQ card through a timing control program. The resolution of the timing sequence is 100 µs. Several instrumentation control programs are used to control the settings of the instruments, such as fiber laser arbitrary function generator (AFG), ODT AFG, arbitrary pulse generator (APG), parametric modulation AFG, MOT multiplexer, rf generator, etc.
2. CCD Camera Preparation
NOTE: CCD camera is used to record the absorption imaging of the cold atoms, which is the main diagnostic tool of cold atoms.
3. 671 nm Laser Preparation
NOTE: A 671 nm single frequency ECDL with 500 mW output power is used to generate the MOT cooling and trapping beams. Another 671 nm ECDL of 35 mW is used for absorption imaging. A digital laser current modulation method (DLCM) is applied for laser frequency stabilization10. The related 6Li energy levels are shown in Figure 3a. Room temperature stability of 20 ± 1 °C is required for the optimal stability of laser frequency locking.
4. Absorption Imaging Preparation
NOTE: The atoms are probed with absorption imaging, which needs two image frames. The first one with the atoms is the signal frame, and the second one without atoms is the reference frame.
5. Cooling Atoms with MOT
NOTE: MOT is a widely-used cooling method in ultracold atoms experiments. This section generates a MOT of around one billion 6Li atoms at about 300 µK.
6. Preparing an Ultracold Fermi Gas with ODT
7. Parametric Cooling
Using this protocol, we study the dependence of the parametric cooling on the modulation time with the optimized modulation frequency and amplitude, both of which have been determined in our previous publication7. We first prepare a noninteracting Fermi gas of 6Li atoms in the two lowest hyperfine states with a temperature of T/TF ≈ 1.2. Here, TF = (6N)1/3ħω/
We present an experimental protocol for parametric cooling of a noninteracting Fermi gas in a crossed-beam optical trap. The critical steps of this protocol include: First, the optically-trapped Fermi gas needs to be cooled close to the degenerate temperature by lowering the trap depth. Second, a modulation frequency is chosen that is resonant with the anharmonic component of the trapping potential. Third, the intensity of the trapping beam is modulated to cool the atomic cloud and measure the dependence of the cloud ene...
The authors have nothing to disclose. Specific product and company citations are for the purpose of clarification only and are not an endorsement by the authors.
We thank Ji Liu and Wen Xu for involving in the experimental setup. Le Luo is a member of the Indiana University Center for Spacetime Symmetries (IUCSS). This work was supported by IUPUI and IUCRG.
Name | Company | Catalog Number | Comments |
500 mW 671 nm ECDL | Toptica | TA Pro | Quantity: 1 |
35 mW 671 nm ECDL | Toptica | DL-100 | Quantity: 1 |
671 nm AOM | Isomet | 1206C | Quantity: 3 |
671 nm AOM Driver | Isomet | 630C-110 | Quantity: 3 |
100 W 1,064 nm CW laser | IPG photonics | YLR-100-1064-LP | Quantity: 1 |
1,064 nm AOM | IntraAction | ATM-804DA6B | Quantity: 1 |
1,064 nm AOM Driver | IntraAction | ME-805EH | Quantity: 1 |
Arbitrary Function Generator | Agilent | 33120A | Quantity: 3 |
Digital I/O Board | United Electronic Industries | PD2-DIO-128 | Quantity: 1 |
System Design Platform | National Instruments | LabVIEW | Quantity: 1 |
Analog Voltage Output Device | Measurement Computing | USB-3104 | Quantity: 1 |
CCD Camera | Hamamatsu | Orca R2 | Quantity: 1 |
Arbitrary Pulse Generator | Quantum Composer | 9618+ | Quantity: 1 |
Analog Voltage Output Device | Measurement Computing | USB-3104 | Quantity: 1 |
20 A power supply | Quantity: 1 | ||
10 A power supply | Quantity: 1 | ||
120 A power supply | Quantity: 2 | ||
Cooling Fans | Quantity: depends on apparatus design | ||
671 nm Mirrors | Quantity: depends on apparatus design | ||
671 nm Half-wave Plate | Quantity: depends on apparatus design | ||
671 nm Quarter-wave Plate | Quantity: depends on apparatus design | ||
500 mW Beam Shutter | Quantity: depends on apparatus design | ||
671 nm Lenses | Quantity: depends on apparatus design | ||
Faraday Isolator | Quantity: 2, one for each ECDL | ||
671 nm Polarizing Beam Splitter | Quantity: depends on apparatus design | ||
Photodetector | Thorlabs | SM05PD1A | Quantity: 1 |
Multiplexer | Analog Devices | ADG409 | Quantity: 1 |
Multiplexer | Analog Devices | ADG408 | Quantity: 2 |
1,064 nm plano-concave lens | Quantity: 1 for beam reducer | ||
1,064 nm plano-convex lens | Quantity: 1 for beam reducer | ||
1,064 nm Mirrors | Quantity: depends on apparatus design | ||
1,064 nm Half-wave Plates | Quantity: depends on apparatus design | ||
1,064 nm Lenses | Quantity: depends on apparatus design | ||
1,064 nm Thin Film Polarizer | Quantity: 1 | ||
100 W, 1,064 nm Beam Dump | Quantity: 1 | ||
100 W, 1,064 nm Power Meter | Quantity: 1 | ||
RF Function Generator | Rigol | DG4162 | Quantity: 1 |
RF Power Amplifier | Mini-Circuits | ZHL-100W-GAN+ | Quantity: 1 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved