A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We demonstrate an assay to analyze the environmental and genetic cues that influence mating behavior in the fruit fly Drosophila melanogaster.
An individual's sexual drive is influenced by genotype, experience and environmental conditions. How these factors interact to modulate sexual behaviors remains poorly understood. In Drosophila melanogaster, environmental cues, such as food availability, affect mating activity offering a tractable system to investigate the mechanisms modulating sexual behavior. In D. melanogaster, environmental cues are often sensed via the chemosensory gustatory and olfactory systems. Here, we present a method to test the effect of environmental chemical cues on mating behavior. The assay consists of a small mating arena containing food medium and a mating couple. The mating frequency for each couple is continuously monitored for 24 h. Here we present the applicability of this assay to test environmental compounds from an external source through a pressurized air system as well as manipulation of the environmental components directly in the mating arena. The use of a pressurized air system is especially useful to test the effect of very volatile compounds, while manipulating components directly in the mating arena can be of value to ascertain a compound's presence. This assay can be adapted to answer questions about the influence of genetic and environmental cues on mating behavior and fecundity as well as other male and female reproductive behaviors.
Reproductive behaviors typically have high energy costs, especially for females, who produce larger gametes than males and must carefully chose the conditions to raise their developing offspring. Because of the energy cost, it is not surprising that reproduction is connected to nutritional conditions. This is true in most, if not all, animals including mammals, whose puberty can be delayed by malnutrition, and whose sexual drive can be negatively affected by food-restriction1.
The reproduction of the genetic model organism Drosophila melanogaster is also affected by nutritional conditions. Males court at higher level in the presence of food volatiles2, and females are more sexually receptive in the presence of yeast, a major nutrient for egg production and offspring survival3,4,5. This evolutionary conserved reproductive response to food offers the opportunity to study mechanisms that connect environmental food availability to sexual reproduction in a genetically tractable and time-efficient organism. Indeed, work in D. melanogaster has implicated the insulin pathway as an important regulator of the connection between food and mating behavior6. It has also shown that the act of mating itself changes the food preference of females as well as the associated chemosensory neurons7,8,9.
It is clear that food cues affect reproductive behaviors in D. melanogaster. These effects seem to mainly affect females, specifically those who have already mated5. However, to test these acute effects of environmental conditions the assay classically used for female mating behavior might not be very suitable due to the long interruptions between mating episodes. In the classic remating assay, a virgin female first mates with a male, and is immediately isolated and presented with a new male 24 to 48 h later. This classic assay has been used with great success to identify components of the male ejaculate that modify the female behavior and the female response12,13,14,15,16,17,18. The continuous mating assay demonstrated here, is therefore, an addition to classic mating assays that can be used to study the acute effect of environmental conditions on reproductive behaviors.
Using the continuous assay for mating behavior that is explained here, we previously showed that a pair of flies exposed to yeast will remate several times over a 24 h observation period5,19,20,21, while flies not exposed to food will only remate once5. This finding can be puzzling in the light of a large portion of the D. melanogaster literature indicating that females do not remate for several days after an initial mating (reviewed in references10,11). However, this discrepancy can easily be explained by assay conditions, where a female is isolated for one to several days before a new mating opportunity is provided. If the pair does not mate in this hour-long observation period, the female is characterized as not receptive. Moreover, the high mating frequency should not be surprising given that the data from wild-caught flies show that females contain sperm from 4 to 6 males in their storage organs; thus indicating that females naturally remate several times22,23.
Here, we demonstrate the use of this continuous mating assay to unravel how flies gather and combine information about environmental conditions to modulate mating frequency. This assay allows one to test a relatively large number of mating couples for genetic studies and to test the influence of volatile and non-volatile environmental cues. The assay typically runs for 24 h, but can be extended to 48 h, allowing the testing of cycling environmental cues such as the light-dark (LD) cycle. We demonstrate this assay by testing the influence of volatile cues from a yeast culture within a pressurized air system in combination with the availability of non-volatile yeast nutrient in the food substrate.
The pressurized air system continuously pumps volatile cues into a mating arena that contains a food substrate and a test couple (whose mating behavior is monitored). To further determine the specifics through which yeast influences mating, we test a major volatile compound of yeast, namely acetic acid24, in combination with an amino acid content that corresponds to that of yeast in the food substrate, in the form of peptone (amino acids derived from enzymatic digestion of animal proteins). Together these experiments demonstrate how the effect of environmental cues on the mating behavior of D. melanogaster can be tested with this assay.
1. Environmentally Controlled Mating Box
2. Fly Rearing and Collection
3. Food Medium Preparation
4. Mating Arena Preparation
5. Yeast Culture for Odor
6. Air Pump Set-up
7. Monitoring of Mating Behavior
Using this continuous assay, mating behavior, and mating frequency in specific, can be determined under experimental environmental conditions. To control environmental conditions, we transformed a stainless-steel kitchen cabinet into a test area, with its own light source and diffusion, which ensures a high abundance of light and a minimum amount of glare from the top of the mating arenas (Figure 1A). The inner test area is completely encased by stainless steel and glass,...
This protocol describes an assay to test mating behavior over 24 h while continuously controlling the environmental cues that a mating couple is hypothesized to use to determine mating frequency. It is possible to increase the mating frequency in response to yeast air delivered through a pressurized air system when the medium contains yeast as well (Figure 2B). Additionally, a similar response in mating frequency can be observed with a simplified food medium containing only agar, peptone, and acetic acid...
The authors have no competing interests to disclose.
We thank the Bloomington Drosophila Stock Center for the fly stocks; C. Gahr, J. T. Alkema, and S. van Hasselt for their early attempt at developing the pressurized air assay; Jasper Bosman for the advice on cultivating yeast; and Rezza Azanchi and Joel Levine for originally developing the time-lapse monitoring of Drosophila mating behavior. J.A. Gorter was supported by a Neuroscience Research School BCN/NWO Graduate Program grant. This work was supported in part by the Dutch organization for scientific research (NWO) (reference: 821.02.020) to J.C. Billeter.
Name | Company | Catalog Number | Comments |
Cabinet | |||
Stainless steel kitchen cabinet | Horecaworld | 7412.0105 | |
White LEDs | Lucky Light | ll-583wc2c-001 | Cold white, 20 mAmp and 2 V |
Red LEDs | Lucky Ligt | ll-583vc2c-v1-4da | Wavelength between 625 nm, 20 mAmp and 6 V |
Resistor | Royal Ohm | CFR0W4J0561A50 | 560 ohm, 0.25 W, 250 V and 5 % tolerance |
Smartphone light meter app | Patrick Giudicelli | Light/Lux Meter FREE, version 1.1.1 | |
Power timer | Alecto | TS-121 | |
Metal brackets | Sharp angle 5 by 5 mm, 2 x 5450 and 1 x 1100 mm long | ||
Frosted glass plate | 1190 x 545 x 5 mm | ||
Filter paper sheets | LEE filters | 220 | White frost |
Small fan | Nanoxia Deep silence | 4260285292828 | 80 mm Ultra-Quiet PC Fan, 1200 RPM |
Big fan | Nanoxia Deep silence | 4260285292910 | 120 mm Ultra-Quiet PC Fan, 650-1500 RPM |
Webcam camera | Logitech | 950270 | B910 HD WEBCAM OEM, Angle: 78-degree, resolution: 5-million-pixel |
Camera software | DeskShare | Security monitor pro | |
Name | Company | Catalog Number | Comments |
Fly rearing | |||
Fly rearing bottles | Flystuff | 32-130 | 6oz Drosophila stock bottle |
Flypad | Flystuff | 59-114 | |
Wild-type flies | Canton-S | ||
Fly rearing vials | Dominique Dutscher | 789008 | Drosophila tubes narrow 25x95 mm |
Incubator | Sanyo | MIR-154 | |
Magnetic hot plate | Heidolph | 505-20000-00 | MR Hei-Standard |
Agar | Caldic Ingredients B.V. | 010001.26.0 | |
Glucose | Gezond&wel | 1019155 | Dextrose/Druivensuiker |
Sucrose | Van Gilse | Granulated sugar | |
Cornmeal | Flystuff | 62-100 | |
Wheat germ | Gezond&wel | 1017683 | |
Soy flour | Flystuff | 62-115 | |
Molasses | Flystuff | 62-117 | |
Active dry yeast | Red Star | ||
Tegosept | Flystuff | 20-258 | 100% |
Peptone (bacto) | BD | 211677 | |
Acetic Acid | Merck | 1000631000 | Glacial, 100% |
Small petridish | Greiner bio-one | 627102 | 35 x 10 mm with vents |
Paraffin film | Bemis NA | Parafilm | |
Name | Company | Catalog Number | Comments |
Yeast and pressurised air set-up | |||
Big petridish | Gosselin | BP140-01 | 140 x 20.6 mm |
Ultrapure water | Millipore corporation | MiliQ | |
Yeast extract | BD | 212750 | |
Agar (pure) | BD | 214530 | bacto |
Glucose (0(+)-glucose monohydrate) | Merck | 18270000004 | |
Open caps | Schott | 29 240 28 | GL45 |
Silicone septum | VWR | 548-0662 | |
Barbed bulkhead fittings | Nalgene | 6149-0002 | |
Large PVC tubing | diameter: outer 1.2 cm and inner 0.9 cm | ||
Small PVC tubing | diameters: outer 0.8 cm and inner 0.5 cm | ||
15 ml tube | Falcon | ||
Aquarium pump | Sera precision | Sera air 110 plus, AC 220-240 V, 50/60 Hz, 3 W and pressure >100 mbar | |
Activated charcoal | Superfish | A8040400 | Norit activated carbon |
Disposible filter unit | Whatman | 10462100 | |
Serological pipettes | VWR | 612-1600 | |
Syringe | BD Plastipak | 300013 | |
Hot glue | Pattex | ||
Syringe filter | Whatman | FP 30/pore size 0.45 mm CA-S | |
Name | Company | Catalog Number | Comments |
Analysis | |||
Statistics software | R | lme4 package |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved