A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Different methods to manipulate three-dimensional architecture in protein-based hydrogels are evaluated here with respect to material properties. The macroporous networks are functionalized with a cell-adhesive peptide, and their feasibility in cell culture is evaluated using two different model cell lines.
Hydrogels are recognized as promising materials for cell culture applications due to their ability to provide highly hydrated cell environments. The field of 3D templates is rising due to the potential resemblance of those materials to the natural extracellular matrix. Protein-based hydrogels are particularly promising because they can easily be functionalized and can achieve defined structures with adjustable physicochemical properties. However, the production of macroporous 3D templates for cell culture applications using natural materials is often limited by their weaker mechanical properties compared to those of synthetic materials. Here, different methods were evaluated to produce macroporous bovine serum albumin (BSA)-based hydrogel systems, with adjustable pore sizes in the range of 10 to 70 µm in radius. Furthermore, a method to generate channels in this protein-based material that are several hundred microns long was established. The different methods to produce pores, as well as the influence of pore size on material properties such as swelling ratio, pH, temperature stability, and enzymatic degradation behavior, were analyzed. Pore sizes were investigated in the native, swollen state of the hydrogels using confocal laser scanning microscopy. The feasibility for cell culture applications was evaluated using a cell-adhesive RGD peptide modification of the protein system and two model cell lines: human breast cancer cells (A549) and adenocarcinomic human alveolar basal epithelial cells (MCF7).
Hydrogels are materials that form insoluble 3D networks capable of binding large amounts of water. Such materials can provide excellent environmental conditions for living cells. Currently, there is increasing interest in the generation of three-dimensional hydrogel structures and in the development of processes to tailor their chemical and physical properties. Once this is achieved, a template for the growth of cells and the manipulation of cellular behavior can be generated1,2,3,4. These 3D structures not only create a more natural and realistic environment than conventional two-dimensional approaches, but they also reveal new possibilities for the growth of stem cells or tumor models5. Different materials possess a range of characteristics that mainly depend upon the pore size of the gel6. The pores play a crucial role in cell culture applications, tissue engineering, and the directed growth of stem cells. For example, oxygen and nutrients diffuse through the matrix, and adequate amounts must be able to reach the cells7. On the other hand, harmful metabolites must be removed as quickly as possible, and sufficient space for cell growth must be available7. Consequently, the properties of the material, and thus the pore size, severely influence the potential benefit and possible applications of the matrix. Depending upon the properties of the material, different cell-growth processes can occur in 3D cell culture, including the formation of neuronal structures; the growth and differentiation of skin or bone cells; and the directed growth of special stem cell lines, like hepatocytes or fibroblasts2,3,8,9,10,11. Another crucial point influencing the possible application of a material is its stability towards external stimuli12. For example, the hydrogel must maintain its mechanical integrity in cell culture media or the human body.
In recent years, research on 3D cell culture hydrogels intensified, and many studies were carried out to resolve the 3D architectures of the systems13. Hydrogels composed of chemically synthesized components are most commonly investigated because they can be easily synthesized and chemically modified and they exhibit high stability (see Zhu et al., 2011 for a review)5. However, proteins have many beneficial properties: as so-called "precision polymers," they are biocompatible; they have a defined length; they are relatively easy to modify; and they have a large number of target sites14,15. In this regard, highly specific, innovative structures can be generated for application in many fields. In this study, a protein-based hydrogel16 was used to demonstrate the ability of well-established methods to influence the 3D architecture of the material. Furthermore, the capability of and applicability to pore generation was also investigated.
Many different techniques are available to modify 3D structures, including both simple methods and sophisticated, highly specialized techniques from different fields of material science. A widespread technique is the use of electrospinning to generate well-defined structures17. Charged fibers are pulled from a solution by an electric field and then solidify upon exposure to oxygen. In this way, fibers in the range of several nanometers up to several microns can be produced. Additional techniques to tune the size, structure, and distribution of the pores within the matrix are soft lithography, photolithography, hydrodynamic focusing, electro-spraying, and bio-printing18,19,20. A significant drawback of these techniques is their dependency upon specific, expensive equipment and special chemicals or materials. Furthermore, experience with these techniques is often not directly transferrable to protein-based materials, and many of the chemicals and methods are not cell compatible.
On the other hand, many techniques do not rely upon special equipment, making them easier and cheaper to apply and to reproduce. A widespread method for structure manipulation is solvent casting21,22,23. Particles are added prior to the polymerization reaction and are distributed homogenously to saturate the solution. After the polymerization, a change of conditions, such as a dilution or a pH change, leads to the solvation of the particles, while the pores remain within the material. The chemicals used in these techniques, such as salt, sugar, paraffin, gelatin, and chalk, are cheap and readily available. In freeze-drying, swollen hydrogels are frozen. The subsequent sublimation of the liquid phases under a vacuum is then performed23,24,25. Water sublimation from the network is gentle enough to maintain the specific 3D structures of the material. In gas foaming, a solution is streamed with a gas while the polymerization takes place, leaving pores within the gel21. The size and distribution of the pores can be adjusted depending upon the gas stream.
To form the protein hydrogel, BSA is reacted with tetrakis (hydroxymethyl) phosphonium chloride (THPC) in a Mannich-type reaction to allow for the formation of covalent bonds between primary amines and the hydroxy groups of the four-armed linker molecule26. Possible harmful intermediates are removed by excessive washing of the material after the reaction occurs.
This study demonstrates the possibility of treating a BSA-based material with different techniques to manipulate and tailor the size of the pores. Each of the techniques can be used in any laboratory worldwide, as no special equipment is necessary. In addition, different parameters, such as swelling ratio, enzymatic degradability, pH stability, and temperature sensitivity, were examined and compared to each other, especially respect to the influence of the different techniques on the generation of 3D architectures. Finally, the materials were functionalized with cell-adhesive peptides to investigate the possible application of the materials to cell culture. Two different model cell lines were used: A549 and MCF7.
1. Hydrogel Preparation
2. Freeze-drying the Hydrogels
3. Particle Leaching
4. Channel Formation
5. Hydrogel Visualization
6. Cell Culture Feasibility
7. Hydrogel Properties
Hydrogel development has become one of the most prominent fields in material research-related biological studies, with thousands of entries indexed in scientific research archives. Although the behavior of many systems is well studied, the manipulation of 3D networks, especially of sensitive protein-based materials, is often a major issue in material science. Another commonly underestimated challenge is the correct measurement of the native structure of a material using cryo electron micr...
The production of macroporous matrices can be beneficial to many different fields. It has high technical and economic potential due to the defined structure of the hydrogel and the ability to control and tune specific material properties. However, the introduction of supramolecular structural elements, such as pores or channels, to a 3D template might influence the overall properties of a material, such as the swelling ratio or the stiffness. This can result in the undesired decomposition, degradation, or breakdown of th...
The authors declare that they have no competing financial interests.
The authors would like to thank Baden-Württemberg Stiftung for their financial support in the "Bioinspired Material Synthesis" framework (BioMatS-14).
Name | Company | Catalog Number | Comments |
Phosphate Buffered Saline (PBS) | Thermo Fisher Scientific | 10010023 | |
Dulbecco’s modified Eagle’s medium (high glucose) | Life Technologies / Thermo Fisher | 11140-050 | |
Fetal Bovine Serum (FBS) | Life Technologies / Thermo Fisher | 10270-106 | |
Penicillin-Streptomycin | Life Technologies / Thermo Fisher | 15140122 | |
MEM Nonessential Amino Acid Solution | Sigma Aldrich | M7145-100ML | |
Trypsin EDTA 0.05% Phenol Red | Thermo Fisher Scientific | 25300062 | |
Ethanol 99.8%, vergällt | Ölfabrik Schmidt | 2133 | |
NaCl | Carl Roth | 9265.1 | |
Albumin Fraction V | Carl Roth | 3854.2 | |
THPC | Sigma Aldrich | 404861-100ML | Toxic |
0.1% Triton X-100 | Sigma Aldrich | X100-100ML | Slightly toxic |
Phalloidin-rhodamine | Life Technologies / Thermo Fisher | R415 | |
3.7% Formaldehyde | Life Technologies / Thermo Fisher | F8775-25ML | Toxic |
Rhodamine B | Sigma Aldrich | 81-88-9 | |
Filtropur S 0.2 | Sarsted Ag und Co. | 2 83.1826.001 | |
µ slide 8 well | Ibidi GmbH | 80826 | |
KCSSGKSRGDS peptide | UPEP Ulm | Custom sysnthesis | |
Ethanol 99.8%, vergällt | Carl Roth | K928.5 | |
Falcon 5 ml Polysterene Round-Bottom Tube | Sarsted Ag und Co. | 62.547.254 | |
Tubes 50 ml | Sarsted Ag und Co. | 62.547.254 | |
Tubes 1.5 ml | Sarsted Ag und Co. | 72,690,001 | |
Tubes 2 ml | Sarsted Ag und Co. | 72,691 | |
CELL CULTURE MICROPLATE, 96 WELL, PS, F-BOTTOM | Greiner | 655073 | |
FreezeDryer Epsilon 1-6D, | Christ, Osterode am Harz, Germany | ||
Confocal Laser Scanning Microscope | Carl Zeiss AG, Oberkochen, Germany | ||
Zen Software Version 2012 Sp1, black edition, 407 version 8,1,0,484 | Carl Zeiss AG, Oberkochen, Germany | ||
GSA Imaga Analyzer Software, GSA Image Analyzer, GSA, Version 419 3.8.7 | GSA GmbH |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved