A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This is a high fat diet feeding protocol to induce obesity in Drosophila, a model for understanding fundamental molecular mechanisms implicated in lipotoxicity. It also provides a high throughput triacylglyceride assay for measuring fat accumulation in Drosophila and potentially other (insect) models under various dietary, environmental, genetic or physiological conditions.
Heart disease is the number one cause of human death worldwide. Numerous studies have shown strong connections between obesity and cardiac malfunction in humans, but more tools and research efforts are needed to better elucidate the mechanisms involved. For over a century, the genetically highly tractable model of Drosophila has been instrumental in the discovery of key genes and molecular pathways that proved to be highly conserved across species. Many biological processes and disease mechanisms are functionally conserved in the fly, such as development (e.g., body plan, heart), cancer, and neurodegenerative disease. Recently, the study of obesity and secondary pathologies, such as heart disease in model organisms, has played a highly critical role in the identification of key regulators involved in metabolic syndrome in humans.
Here, we propose to use this model organism as an efficient tool to induce obesity, i.e., excessive fat accumulation, and develop an efficient protocol to monitor fat content in the form of TAGs accumulation. In addition to the highly conserved, but less complex genome, the fly also has a short lifespan for rapid experimentation, combined with cost-effectiveness. This paper provides a detailed protocol for High Fat Diet (HFD) feeding in Drosophila to induce obesity and a high throughput triacylglyceride (TAG) assay for measuring the associated increase in fat content, with the aim to be highly reproducible and efficient for large-scale genetic or chemical screening. These protocols offer new opportunities to efficiently investigate regulatory mechanisms involved in obesity, as well as provide a standardized platform for drug discovery research for rapid testing of the effect of drug candidates on the development or prevention of obesity, diabetes and related metabolic diseases.
We are in a time where obesity, and its associated economic burdens, is a worldwide problem1. Two out of every three Americans are overweight or obese with related heart pathologies, the primary cause of death within the adult population2. New efficient methods are needed to adequately investigate the genetic and molecular components implicated in the regulation of metabolic syndrome using model organisms. For this reason, we choose the fruit fly Drosophila model because it shares the most basic biological processes with mammals, including mice and humans3,4,5,6. Drosophila's genome is highly conserved during evolution but overall much smaller with less gene duplication and metabolic complexity, making it ideal for understanding the fundamental mechanisms implicated in many human diseases4,7,8. Also, characteristic processes carried out by adipose tissue, the gut and pancreas are represented in the fly and mediate regulatory functions in glucose and lipid metabolism, for example, that are similar to humans9,10,11. Moreover, the basic molecular pathways involved in the control of obesity, insulin resistance and diabetes in humans are functionally conserved in Drosophila melanogaster12,13,14,15,16. Like higher organisms, Drosophila has a beating heart that is formed during development by similar processes to that of the mammalian heart3,17. Thus, the development of a reliable HFD feeding protocol and high throughput TAG assay, adapted for efficient screening purposes using the genetic tool box of Drosophila, provide an important means to study and understand the fundamental genetic basis underlying complex metabolic diseases.
The HFD food itself is made from a standard laboratory fly food supplemented with coconut oil, which is composed mostly of saturated fatty acids known to be associated with metabolic syndrome18. While inducing obesity in mammalian models, such as rodents, can take months19,20, our optimized HFD feeding protocol in Drosophila effectively and reproducibly increases organismal fat content in a matter of days12,14. This protocol, in conjunction with a high throughput TAG assay, allows efficient mass screening for the effects of genetic factors, environmental influences and drug candidates to discover new modulators of fat metabolism. In consequence, these protocols are likely relevant to understand and/or combat obesity and obesity-associated human pathologies.
The feeding protocol is versatile and may be applied to study the metabolic and functional effects of single saturated or unsaturated fatty acid. The use of this high throughput TAG assay is not limited to D. melanogaster, but may be adapted to a variety of small model organisms with cuticle or tough extracellular matrices (e.g., other Drosophila species, C. elegans and other emerging invertebrate model organisms) to measure fat content under different environmental, genetic or physiological conditions, at any stage of development, adulthood or phase of metabolic disease. The TAG assay is based on a colorimetric measurement of a series of enzymatic reactions that degrade the TAGs into free fatty acids, glycerol, Glycerol 3-phosphate and finally H2O2 that reacts with 4-aminoantipyrine (4-AAP) and 3,5-dichloro-2-hydroxybenzene sulfonate (3,5 DHBS) to produce a red colored product that is measured using a 96-well spectrophotometer.
Access restricted. Please log in or start a trial to view this content.
1. HFD Feeding Protocol
Table 1. Fly food recipe.
This table summarizes the different ingredients used to prepare our control food. Once made, 10 mL of the food is poured into vials, cooled and stored at 4 °C for long term storage.
Figure 1. HFD feeding in Drosophila.
The scheme shows the different feeding steps for flies on a control food (normal diet without addition of coconut oil-NF) or HFD (with the addition of coconut oil). The entire process takes 10 days after the initial collection of adult flies. Please click here to view a larger version of this figure.
2. TAG Assay
Access restricted. Please log in or start a trial to view this content.
In D. melanogaster, as is the case with other species, there is sexual dimorphism between males and females22. It is well known that females are larger, with more fat in their abdomens, than males22. To test the effectiveness of our protocol, we performed TAG assays to determine the differences in TAG content between males and females of standard laboratory wildtype (w1118) flies. The data show that females have ...
Access restricted. Please log in or start a trial to view this content.
Obesity induction in mice can take months19,20. In flies, this HFD feeding protocol allows for induction of excess fat accumulation in a matter of days or less, causing increases in fat accumulation only after 18 h (see Figure 2). HFD feeding with the described protocol increases glucose content 12 and decreases Bmm lipase and PGC-1 expression24. This is in contrast to fasting ...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We would like to thank Erika Taylor for editing this manuscript. This work was funded by grants from the National Institutes of Health (P01 HL098053, P01 AG033561 and R01 HL054732) to R.B., a post-doctoral research supplement (R01 HL085481) and fellowship (AAUW) to S.B.D., and grants from the American Heart Association to S.B.D. and R.T.B.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Talboys Ball dropper/bead Dispenser | Talboys | #: 930150 | |
Talboys High Throughput Homogenizer | Talboys | #: 930145 | |
Grinding Balls, Stainless Steel | OPS Diagnostics, LLC | # GBSS 156-5000-01 | 5000 balls |
Masterblock 96 Well deep Microplates | Greiner Bio-One | # T-3058-1 | case of 80 plates |
Greiner 96 well microplate flat bottom | Sigma Aldrich | # M4436 | 40 plates |
Greiner CapMat for sealing multiwell plates | Sigma Aldrich | # C3606 | 50 sealing plates |
Reagent Reservoirs | Thomas Scientific | # 1192T71 | 12/PK |
Thermo Scientific Finnpipette 4661040 | Thermo Scientific | # 4661040 | 1-10 ul multipipette |
Thermo Scientific Finnpipette 4661070 | Thermo Scientific | # 4661070 | 30-300ul multipipette |
Thermo Scientific Finnpipette 4661020 | Thermo Scientific | #4661020 | 10-100ul multipipette |
Multichannel tips | Denville Scientific Inc | # P3131-S | for 10 uL pipette |
Multichannel tips | Denville Scientific Inc | # P3133-S | for 200 uL pipette |
Multichannel tips | Denville Scientific Inc | #P1125 | for 100 uL pipette |
Forceps | Roboz Surgical | # 5 Dumonts | Super fine forceps |
Mettler Toledo Excellence XS Analytical Balance Mfr# XS64 | Cole-Parmer scientific experts | # EW-11333-00 | |
Metler Toledo Excellence XS Toploading Balance | Cole-Parmer scientific experts | # EW-11333-49 | |
96-Well microplate Centrifuge | Hettich Zentrifugen | # Rotina 420R | |
Microplate Reader | Molecular devices | # SpectraMax 190 | |
Lab-Line Bench Top Orbit Environ Shaker Incubator | Biostad | # 3527 | |
Infinity Triglycerides reagent | Thermo Scientific | # TR22421 | |
Triglyceride Standard | Stanbio | #2103 - 030 | |
Quick Start Bradford Protein Assay | Bio-RAD | # 500-0205 | 1x dye Reagent |
Coconut oil | Nutiva | # 692752200014 | 15 0z jar |
PBS 10X | Thermo Scientific | # AM9625 | 500 ml |
Triton X-100 | Sigma Aldrich | # 9002-93-1 | |
Gas-permeable Foil | Macherey-Nagel | # 740675 | 50 pieces |
filter Paper | VWR | # 28317-241 | Pack of 100 |
Drosophila vials | Genesee Scientific | Cat #: 32-116SB | |
Quick Start Bovine Serum Albumin Standard | Bio-Rad | # 5000206 | |
FlyNap Anesthetic | Carolina | # 173025 | 100 mL |
Kimwipes Low-Lint | Uline | # S-8115 | 1-Ply, 4.4 x 8.4" |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved