A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
A single-molecule magnetic tweezers platform to manipulate G-quadruplexes is reported, which allows for the study of G4 stability and regulation by various proteins.
Non-canonical nucleic acid secondary structure G-quadruplexes (G4) are involved in diverse cellular processes, such as DNA replication, transcription, RNA processing, and telomere elongation. During these processes, various proteins bind and resolve G4 structures to perform their function. As the function of G4 often depends on the stability of its folded structure, it is important to investigate how G4 binding proteins regulate the stability of G4. This work presents a method to manipulate single G4 molecules using magnetic tweezers, which enables studies of the regulation of G4 binding proteins on a single G4 molecule in real time. In general, this method is suitable for a wide scope of applications in studies for proteins/ligands interactions and regulations on various DNA or RNA secondary structures.
Four-stranded DNA or RNA G4 structures play critical roles in many important biological processes1. Many proteins are involved in G4 binding and regulation, including telomere binding proteins (telomerase, POT1, RPA, TEBPs, TRF2)1,2, transcription factors (nucleolin, PARP1)3, RNA processing proteins (hnRNP A1, hnRNP A2)4, helicases (BLM, FANCJ, RHAU, WRN, Dna2, Pif1)5, and DNA replication related proteins (Rif1, REV1, PrimPolymerase)6. Protein binding can stabilize or destabilize G4 structures; thus regulating the subsequent biological functions. The stability of G4 was measured by thermal melting using ultraviolet (UV) or circular dichroism (CD) methods7. However, such conditions are not physiological relevant and are difficult to apply to studying the effects of binding proteins7.
The rapid development in single-molecule manipulation technologies has enabled studies of folding and unfolding of a biomolecule, such as a DNA or a protein, at a single-molecule level with nanometer resolution in real time8. Atomic force microscopy (AFM), optical tweezers, and magnetic tweezers are the most commonly used single-molecule manipulation methods. Compared to AFM and optical tweezers9, magnetic tweezers allow stable measurements of folding-unfolding dynamics of a single molecule over days by using an anti-drift technique10,11.
Here, a single-molecule manipulation platform using magnetic tweezers to study the regulation of G4 stability by binding proteins is reported12,13. This work outlines the basic approaches, including sample and flow channel preparation, the setup of magnetic tweezers, and the force calibration. The force control and the anti-drift protocols as described in step 3 allow for long time measurements under various force controls, such as constant force (force clamp) and constant loading rate (force-ramp), and force-jump measurement. The force calibration protocol described in step 4 enables force calibration of < 1 µm short tethers over a wide force range up to 100 pN, with a relative error within 10%. An example of regulation of the stability of the RNA Helicase associated with AU-rich element (RHAU) helicase (alias DHX36, G4R1) that plays essential roles in resolving RNA G4 is used to demonstrate the applications of this platform13.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of G4 DNA for Single-molecule Stretching
2. Preparation of Flow Channel
3. Magnetic Tweezers Setup and Identification of Single dsDNA Tether
4. Magnetic Tweezers Force Calibration
5. Single-molecule Manipulation of G4 in the Presence and Absence of Binding Proteins
Access restricted. Please log in or start a trial to view this content.
The experiment setup for stretching a single G4 molecule is shown in Figure 4. A single-stranded G4 forming sequence spanned between two dsDNA handles was tethered between a coverslip and a paramagnetic bead. To find a single dsDNA tethered bead, an overstretching assay was performed by increasing the force at constant loading rates. Three types of measurements were often used for studying the folding and unfolding of biomolecules: (i) constant force measurem...
Access restricted. Please log in or start a trial to view this content.
As described above, a platform for studying the mechanical stability of G4 DNA and the interactions of protein to G4 using single-molecule magnetic tweezers is reported. Accompanying the platform, highly efficient protocols of finding G4 DNA tether, and measurement of the folding-unfolding dynamics and stability of the G4 structure with nanometers special resolution are developed. The focal plane locking enables highly stable anti-drift control, which is important for detecting a small structure transition such as G4 (st...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors thank Meng Pan for proofreading the manuscript. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 3 (MOE2012-T3-1-001) to J.Y.; the National Research Foundation through the Mechanobiology Institute Singapore to J.Y.; the National Research Foundation, Prime Minister's Office, Singapore, under its NRF Investigatorship Programme (NRF Investigatorship Award No. NRF-NRFI2016-03 to J.Y.; the Fundamental Research Fund for the Central Universities (2017KFYXJJ153) to H. Y.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
DNA PCR primers | IDT | DNA preparations | |
DNA PCR chemicals | NEB | DNA preparations | |
restriction enzyme BstXI | NEB | R0113S | DNA preparations |
coverslips (#1.5, 22*32 mm, and 20*20 mm) | BMH.BIOMEDIA | 72204 | flow channel preparation |
Decon90 | Decon Laboratories Limited | flow channel preparation | |
APTES | Sigma | 440140-500ML | flow channel preparation |
Sulfo-SMCC | ThermoFisher Scientific | 22322 | flow channel preparation |
M-280, paramganetic beads,streptavidin | ThermoFisher Scientific | 11205D | flow channel preparation |
Polybead Amino Microspheres 3.00 μm | Polysciences, Inc | 17145-5 | flow channel preparation |
2-Mercaptoethanol | Sigma | M6250-250ML | flow channel preparation |
Olympus Microscopes IX71 | Olympus | IX71 | Magnetic tweezers setup |
Piezo-Z Stages P-721 | Physik Instrumente | P-721 | Magnetic tweezers setup |
Olympus Objective lense MPLAPON-Oil 100X | Olympus | MPLAPON-Oil 100X | Magnetic tweezers setup |
CCD/CMOS camera | AVT | Pike F-032B | Magnetic tweezers setup |
Translation linear stage | Physik Instrumente | MoCo DC | Magnetic tweezers setup |
LED | Thorlabs | MCWHL | Magnetic tweezers setup |
Cubic Magnets | Supermagnete | Magnetic tweezers setup | |
Labview | National Instruments | Magnetic tweezers setup | |
OriginPro/Matlab | OriginLab/MathWorks | Data analysis |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved