A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We introduce the foot-stepping serial reaction time (SRT) task. This modified SRT task, complementing the classic SRT task that involves only finger-pressing movement, better approximates daily sequenced activities and allows researchers to study the dynamic processes underlying discrete response measures and disentangle the explicit process operating in implicit sequence learning.
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
Implicit motor sequence learning, generally known as learning a sequence without knowing the sequence, is critical to our daily activities and has been well studied by a paradigmatic task named the serial reaction time (SRT) task designed by Nissen and Bullemer1. In this classic SRT task, participants press keys to respond quickly and accurately to visual stimuli. To examine sequence learning, the appearance of visual stimuli is manipulated to follow either a pre-structured or random sequence, which is unknown to participants. Learning is evidenced by the faster response time to the pre-structured sequence (e.g., the training sequence) than that to the random or another pre-structured sequence1,2. While the classic SRT task typically requires bi-manual finger tapping, a vast majority of implicit motor sequence learning in everyday activities, such as dancing, playing musical instruments, or playing sports, involves whole body actions that present postural and inertial challenges not found in the classic SRT task. Thus, we proposed that sequence learning tasks need to be more multifaceted. In addition, the focus of the previous research has been almost exclusively on the cognitive component of the task (e.g., decision making or action selection), ignoring the motor control issues involved in sequence learning (e.g., movement execution). Thus, to further understand implicit motor sequence learning, it is essential to study sequence learning in a whole-body or gross motor task that better approximates our daily motor activities.
In our recent studies, we extended the classic SRT task to a modified SRT task where finger pressing was replaced by foot stepping to incorporate postural control into sequence learning3,4,5. This modified task presents its own advantages to complement the classic SRT task. First, the gross motor sequence learning task better mimics daily sequential activities where whole-body movement is involved. To date, our understanding of motor sequence learning typically comes from the classic SRT task, but little is known whether the knowledge of motor sequence learning from the classic SRT task remains to be true in learning sequential motor skills in daily activities. Thus, the modified SRT task allows us to examine whether the systematically reported characteristics (e.g., age-independent implicit sequence learning between children and adults) in the finger-pressing SRT task remain when postural control is involved. Additionally, in populations with posture control and gross motor skill learning difficulties, such as children with developmental coordination disorder6,7,8, understanding how posture control interacts with gross motor sequence learning is critical to help improve intervention strategies, and thus optimize the effectiveness of learning sequential motor skills in daily life.
Second, a common notion about implicit sequence learning is that motor planning, and not movement execution, plays an important role in learning a sequence in the classic SRT task9. This is because pressing keys does not involve moving to new locations in space, as the fingers are always on the response keys. However, many daily sequential behaviors involve large spatial movements. Little is known as to whether movement execution is a key player in motor sequence learning when large spatial movements are required. In the classic SRT task, response time, the summation of reaction time (RT) and movement time (MT), serves as an indicator of sequence learning. The foot-stepping SRT task, like other paradigms involving spatial movements10, allows the researcher to disentangle response time in implicit sequence learning into RT, which reflects cognitive processing, and MT, which characterizes the movement itself.
Third, in addition to MT, the combination of the foot-stepping SRT task and motion capture techniques provides rich data on the continuous whole-body movement (e.g., movement of the center of mass, or COM). Measuring the continuous change of movement has the advantage of revealing the dynamics of the cognitive processes underlying the discrete response measured by RT or MT11,12. In particular, learning sequences in the SRT task are typically explained as a mixture of explicit and implicit processes. That is, despite the common use of the SRT task as an implicit learning task, participants often show the capability to verbally recall the learned sequence after the SRT task, suggesting an explicit component involved in implicit sequence learning. Although the explicit component can be assessed by recall tests conducted after the SRT task13,14, these post-task tests lack the ability to examine the temporal evolution of explicit knowledge during learning. We propose that with explicit sequence knowledge, an individual would know the location of the next stimulus, and thus produce anticipatory postural adjustment15,16,17 in a feedforward manner to prepare for the stepping foot to move to the corresponding target. Therefore, examining the movement of the COM before the stimulus appearance (i.e., anticipation) opens a window to studying the progressive development of explicit memory during implicit sequence learning.
The protocol demonstrates the experimental set-up and procedure of the foot-stepping SRT task. We provide representative results of response time, RT, and MT. In addition, we present results regarding the relationship between posture control and the explicit processes underlying implicit motor sequence learning.
The protocol was performed in accordance with the guidelines approved by the Institutional Review Board at the University of Maryland, College Park.
1. Experimental Set-up
2. Participant Preparation
3. The Foot-stepping SRT Task Procedure
4. Data Processing and Statistical Analysis
The above paradigm is implemented by Du and colleagues in a series of studies3,4,5. We use a part of data adopted from one of these studies4 to represent the usage of the foot-stepping SRT task. In this study, there are 6 learning blocks and a RSI of 700 ms is used. Visual stimuli followed sequence A (i.e., 1423564215; Figure 1a) in b...
This protocol describes the experimental set-up and procedures for a modified SRT task. The modified SRT task shares its appealing simplicity with the classic SRT task, although the modified SRT task demands use of a motion capture technique. Like the classic SRT task, many parameters could be manipulated for specific research questions in the foot-stepping SRT task, including but not limited to: the length of interval-stimulus interval or response-stimulus interval27, the type of sequence structu...
The authors have nothing to disclose.
Support for this research was provided by the University of Maryland Kinesiology Graduate Research Initiative Fund to Yue Du.
Name | Company | Catalog Number | Comments |
Vicon motion capture system | Vicon | Vicon T-40, T-160, calibration wand | Alternative systems may be used |
50 mm reflective markers | Vicon | N/A | Numbers of markers may be varied |
Labview software | National Instruments | N/A | Control visual stimuli. Use together with DAQ board. Alternative software may be used |
DAQ board | National Instruments | BNC-2111; DAQCard-6024E | |
MATLAB | MathWorks | N/A | Alternative software may be used |
double sided hypo-allergenic adhesive tape | N/A | ||
pre-wrapping tape | N/A |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved