A subscription to JoVE is required to view this content. Sign in or start your free trial.
In the past, small animal irradiation was usually performed without the ability to target a well-delineated tumor volume. The goal was to mimic the treatment of human glioblastoma in rats. Using a small animal irradiation platform, we performed MRI-guided 3D conformal irradiation with PET-based sub-volume boosting in a preclinical setting.
For decades, small animal radiation research was mostly performed using fairly crude experimental setups applying simple single-beam techniques without the ability to target a specific or well-delineated tumor volume. The delivery of radiation was achieved using fixed radiation sources or linear accelerators producing megavoltage (MV) X-rays. These devices are unable to achieve sub-millimeter precision required for small animals. Furthermore, the high doses delivered to healthy surrounding tissue hamper response assessment. To increase the translation between small animal studies and humans, our goal was to mimic the treatment of human glioblastoma in a rat model. To enable a more accurate irradiation in a preclinical setting, recently, precision image-guided small animal radiation research platforms were developed. Similar to human planning systems, treatment planning on these micro-irradiators is based on computed tomography (CT). However, low soft-tissue contrast on CT makes it very challenging to localize targets in certain tissues, such as the brain. Therefore, incorporating magnetic resonance imaging (MRI), which has excellent soft-tissue contrast compared to CT, would enable a more precise delineation of the target for irradiation. In the last decade also biological imaging techniques, such as positron emission tomography (PET) gained interest for radiation therapy treatment guidance. PET enables the visualization of e.g., glucose consumption, amino-acid transport, or hypoxia, present in the tumor. Targeting those highly proliferative or radio-resistant parts of the tumor with a higher dose could give a survival benefit. This hypothesis led to the introduction of the biological tumor volume (BTV), besides the conventional gross target volume (GTV), clinical target volume (CTV), and planned target volume (PTV).
At the preclinical imaging lab of Ghent University, a micro-irradiator, a small animal PET, and a 7 T small animal MRI are available. The goal was to incorporate MRI-guided irradiation and PET-guided sub-volume boosting in a glioblastoma rat model.
High-grade glioma is the most common and most aggressive malignant brain tumor in adults with a median survival of 1 year despite current treatment modalities. The standard of care includes maximal surgical resection followed by combined external beam radiation therapy (RT) and temozolomide (TMZ), followed by maintenance TMZ1,2,3. Since the introduction of TMZ now more than 15 years ago, no significant improvements have been made in the treatment of these tumors. Therefore, the implementation of new therapeutic strategies is urgent but should be first investigated in small an....
The study was approved by the ethics committee for animal experiments (ECD 09/23 and ECD 12/28). All commercial details can be found in Table of Materials.
1. F98 GB Rat Cell Model
To mimic the human treatment methodology for the irradiation of glioblastoma in a preclinical model, inclusion of MRI-guided radiotherapy was necessary. Using the PCTPS and the micro-irradiator interface we were able to irradiate F98 glioblastoma in rats with multiple conformal non-coplanar arcs targeting the contrast-enhanced region on T1-weighted MRI17. Rigid-body transformations in combination with a multi-modality bed were used for image registration between MR.......
To achieve accurate irradiation of the glioblastoma tumor target in the rat brain, the micro-irradiator's on-board CT guidance was not sufficient. Brain tumors are hardly visible due to insufficient soft tissue contrast, even if contrast enhancement would be used. As such, MRI needs to be included to allow more precise irradiation. Using a sequential MR acquisition on a 7 T system and a CT acquisition on the micro-irradiator we were able to target the dose to the contrast-enhancing tumor tissue in the brain and calcu.......
The authors have no conflicts of interest to disclose
The authors would like to thank Stichting Luka Hemelaere and Soroptimist International for supporting this work.
....Name | Company | Catalog Number | Comments |
GB RAT model | |||
F98 Glioblastoma cell line | ATCC | CRL-2397 | |
Fischer F344/Ico crl Rats | Charles River | N/A | http://www.criver.com/products-services/basic-research/find-a-model/fischer-344-rat |
Micropump system | World Precision Instruments | UMP3 | Micro 4: https://www.wpiinc.com/products/top-products/make-selection-ump3-ultramicropump/#tabs-1 |
Stereotactic frame | Kopf | 902 | Model 902 Dual Small Animal Stereotaxic frame |
diamant drill | Velleman | VTHD02 | https://www.velleman.eu/products/view/?id=370450 |
Bone wax | Aesculap | 1029754 | https://www.aesculapusa.com/products/wound-closure/hemostatic-bone-wax |
Insulin syringe Microfine | Beckton-Dickinson | 320924 | 1 mL, 29G |
InfraPhil IR lamp | Philips | HP3616/01 | |
Ethilon | Ethicon | 662G/662H | FS-2, 4-0, 3/8, 19 mm |
Name | Company | Catalog Number | Comments |
Cell culture | |||
DMEM | Invitrogen | 14040-091 | |
Penicilline-streptomycine | Invitrogen | 15140-148 | |
L-glutamine | Invitrogen | 25030-032 | |
Fungizone | Invitrogen | 15290-018 | |
Trypsin-EDTA | Invitrogen | 25300-062 | |
PBS | Invitrogen | 14040-224 | |
Falcons | Thermo Scientific | 178883 | 175 cm2 nunclon surface, disposables for cell culture with filter caps |
Cell freezing medium | Sigma-aldrich | C6164 | Cell Freezing Medium-DMSO, sterile-filtered, suitable for cell culture, endotoxin tested |
Name | Company | Catalog Number | Comments |
Animal irradiation | |||
Micro-irradiator | X-strahl | SARRP | |
software for irradiation | X-strahl | MuriPlan | pre-clinical treatment planning system (PCTPS), version 2.0.5. |
Name | Company | Catalog Number | Comments |
Small animal PET | |||
microPET system possibility 1 | Molecubes | B-Cube | http://www.molecubes.com/b-cube/ |
microPET system possibility 2 | TriFoil Imaging, Northridge CA | FLEX Triumph II | http://www.trifoilimaging.com |
PET tracers | In-house made | 18F-FDG, 18F-FET, 18F-FAZA, 18F-Choline | |
Name | Company | Catalog Number | Comments |
Small animal MRI | |||
microMRI system | Bruker Biospin | Pharmascan 70/16 | https://www.bruker.com/products/mr/preclinical-mri/pharmascan/overview.html |
Dotarem contrast agent | Guerbet | MRI contrast agent, Dotarem 0,5 mmol/ml | |
rat whole body transmitter coil | Rapid Biomedical | V-HLS-070 | |
rat brain surface coil | Rapid Biomedical | P-H02LE-070 | |
Water-based heating unit | Bruker Biospin | MT0125 | |
30 G Needle for IV injection | Beckton-Dickinson | 305128 | 30 G |
PE 10 tubing (60 cm/injection) | Instech laboratories, Inc | BTPE-10 | BTPE-10, polyethylene tubing 0.011 x .024 in (0.28 x 60 mm), non sterile, 30 m (98 ft) spool, Instech laboratories, Inc Plymouth meeting PA USA- (800) 443-4227- http://www.instechlabs.com |
non-heparinised micro haematocrit capillaries | GMBH | 7493 21 | these capillaries are filled with water to create markers visible on MRI and CT |
Name | Company | Catalog Number | Comments |
Consumables | |||
isoflurane: Isoflo | Zoetis | B506 | Anaesthesia |
ketamine: Ketamidor | Ecuphar | Anaesthesia | |
xylazine: Sedaxyl | Codifar NV | Anaesthesia | |
catheter | Terumo | Versatus-W | 26G |
Temozolomide | Sigma-aldrich | T2577-100MG | chemotherapy |
DMSO | Sigma-aldrich | 276855-100ML | |
Insulin syringe Microfine | Beckton-Dickinson | 320924 | 1 mL, 29G |
Name | Company | Catalog Number | Comments |
Image analysis | |||
PMOD software | PMOD technologies LLC | PFUS (fusion tool) | biomedical image quantification software (BIQS), version 3.405, https://www.pmod.com/web/?portfolio=22-image-processing-pfus |
Name | Company | Catalog Number | Comments |
Anesthesia-equipment | |||
Anesthetic movabe unit | ASA LTD | ASA 0039 | ASA LTD, 5 valley road, Keighley, BD21 4LZ |
Oxygen generator | Veterinary technics Int. | 7F-3 | BDO-Medipass, Ijmuiden |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved