A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This work presents a new protocol for the assessment of Attention Deficit Hyperactivity Disorder (ADHD) by providing a more objective diagnostic procedure for this developmental disorder based on the use of innovative tools. It also analyzes the relationship between activation measures and executive function measures.
Attention Deficit Hyperactivity Disorder (ADHD) is a problem that impacts academic performance and has serious consequences that result in difficulties in scholastic, social and familial contexts. One of the most common problems in the identification of this disorder relates to the apparent over diagnosis of the disorder due to the absence of global protocols for assessment. The research group of School Learning, Difficulties and Academic Performance (ADIR) from the University of Oviedo, has developed a complete protocol that suggests the existence of certain patterns of cortical activation and executive control for identifying ADHD more objectively. This protocol takes into consideration some of the hypothetical determinants of ADHD, including the relationship between activation of selected areas of the brain, and differences in performance on various aspects of executive functioning such as omissions, commissions or response times, using innovative tools of Continuous Performance Testing (based on Virtual Reality CPT and Traditional CPT) and brain activation measures (two different tools, based on Hemoencephalography- nirHEG; and Quantified Electroencephalography --Q-EEG, respectively). This model of assessment aims to provide an effective assessment of ADHD symptomatology in order to design an accurate intervention and make appropriate recommendations for parents and teachers.
The overall goal of the present protocol is to develop a complete procedure or model of assessment for the diagnosis of Attention Deficit Hyperactivity Disorder, otherwise known as ADHD. ADHD is one of the problems that impacts academic performance. It is understood to be a disorder characterized by problems with attention, inhibitory control and hyperactivity, whose performance is significantly lower than their peers1,2. The latest version of the Diagnostic and Statistical Manual of Mental Disorders (DSM)1 includes different updates from the previous version: ADHD has been categorized as a neurodevelopmental disorder; the age of appearance of the symptoms has been increased so now the symptoms can manifest before 12 years of age; the term ADHD presentation should be used instead of subtype (predominantly hyperactive/impulsive; predominantly inattentive; and combined presentation, and); finally, it has been accepted as a comorbidity with autism spectrum disorders.
There are different estimations of prevalence rates depending on the country or region analyzed3,4,5. An international global systematic3 review observed an average prevalence rate of 5.29%. However, applying criteria from the Diagnostic and Statistical Manual of Mental Disorders4, the percentage ranges from 5.9 to 7.1%. Similarly, a meta-analysis of ADHD in a Spanish population provided an average of 6.8%5. The variations in prevalence rates could be due to the different assessment protocols used.
Although there is a considerable body of research suggesting a neurological basis for ADHD, the origins of this disorder remain unclear. Several studies have associated the ADHD symptomatology to brain cortical hypoactivation, which is related to a deficit in the dopaminergic and noradrenergic systems6. The noradrenergic system modules the selective attention and the activation levels needed to carry out a task. On the other hand, the dopaminergic system is responsible for inhibitory control, both at an executive and motivational level. The low cortical activation related to the dopaminergic and noradrenergic systems is presumed to be the basis for the inhibitory and attentional deficits presented in the ADHD. In this sense, children with ADHD show low cortical activation in the dopaminergic and noradrenergic systems, which is manifested by different profiles of electro cortical activity in a state of rest, evidenced by increased theta -and decreased beta- activity7,8 as well as low levels of blood oxygenation in the Fp1 (front left side of the frontal lobe), and FPz/Cz (central zone of the pre-frontal cortex) regions.
Blood oxygenation is measured using nir-HEG, which uses functional near-infrared spectroscopy to measure color changes in the blood in the brain to indicate oxygen saturation areas; oxygenated blood is bright red whereas de-oxygenated blood is a deep, almost purplish crimson. Cortical activation is measured using quantified electroencephalography (Q-EEG). This is a computerized EEG system that records electrical activity in the brain to provide levels of cortical activation through the beta/theta ratio. It measures attention in general, independently of the task being performed. Other studies have focused on the existence of an executive function (EF) impairment in the ADHD population9, which would explain the difficulty children with ADHD have controlling impulsive responses, resisting interference or distraction, organizing activities in a sequential manner, and sustaining cognitive effort while performing an activity.
Generally, these characteristic symptoms of ADHD have serious consequences which result in difficulties in scholastic, social and familial contexts. Children with ADHD have a higher probability of repeating a grade and/or completing fewer grades at school than children without ADHD. Moreover, dropping out of high school is three times more likely among youth with ADHD10,11.
Considering the modifications and the new categorization of ADHD in the current version of the Diagnostic and Statistical Manual of Mental Disorders 1, results relevant to establish the relationship between cortical activation levels in specific brain areas, executive functions, and diagnosis-related variables7,8,11,12 (i.e., differences between the three types of ADHD presentations).
One of the most common problems in the identification of ADHD is the over diagnosis of the disorder due to the absence of global protocols for assessment. The fact that professionals do not have a general protocol based on objective variables is causing a large percentage of false positive and false negative cases of ADHD. This situation highlights the need for professionals and clinicians to have a clear protocol that considers not only the relevant variables but also the relationships between them.
For this reason, the research group of School Learning, Difficulties and Academic Performance (ADIR) from the University of Oviedo has been working on developing a complete protocol to identifyprofiles of cortical activation and executive control to provide a more objective diagnosis of ADHD than what is currently in use. This protocol is particularly important because it takes into account the fact that cortical activation in the frontal and prefrontal cortex impacts the executive function. The current protocol will be useful for clinicians who are interested in performing a complete assessment that considers the interaction between relevant variables in the diagnosis. To that end, the protocol is based on the assessment model from a recent study proposed by Rodriguez et al. which takes into consideration the interaction between cortical activation and executive variables (Figure 1).
In summary, the purpose of this protocol is to provide a more objective diagnostic procedure for this developmental disorder than is currently available, and to analyze in depth the relationship between activation measures and executive function measures. The procedure will also take into consideration some of the hypothetical determinants of ADHD, both in the relationship between activation of selected areas of the brain and differences in performance on various aspects of executive functioning such as omissions, commissions or response times.
The present study was conducted according to the Declaration of Helsinki, which establishes the ethical principles for research involving human beings. The study's aims, scope and procedure were also approved by the Ethics Committee of the University of Oviedo and University Hospital of Asturias.
1. Parents Report
2. Cognitive Measures
3. Executive Measures Using Continuous Performance Tests
4. Cortical Activation Measures in Fp1 and Fpz/Cz Regions (Hemoencephalography, and Quantified Electroencephalography) 17
Using the assessment procedure presented here, it is possible to carry out an effective assessment about ADHD symptomatology in order to design an accurate intervention and make recommendations for parents and teachers. Below are a series of representative results of a participant with ADHD and a participant without ADHD, which will allow professionals to see the differences between the two profiles.
Once clinicians had the info...
Here we present an effective protocol for assessing ADHD from 6-16 years of ages. Given the symptomatic complexity of ADHD and its high prevalence rates, professionals must have reliable and valid instruments to diagnose this disorder. Generally, questionnaires based on behavioral observations are widely used. However, the use of these instruments as the sole assessment measure has certain limitations, including potential subjectivity on the part of the observer18.
As t...
The authors who are listed above certify there are no financial interests or other conflicts of interest regarding the present study.
This work has been supported by a project of the Principality of Asturias (FC-15-GRUPIN14-053) and a predoctoral grant from the Severo Ochoa Program (BP14-030). We would like to thank Anna Bujnowska for her contribution and Heather Marsh and Nigel Marsh for their help.
Name | Company | Catalog Number | Comments |
EDAH | TEA Company | It is a Scale for the Assessment of ADHD that was administered to families and/or teachers. It comprises 20 items that provide information on the presence of symptoms relating to attention deficit and hyperactivity/impulsivity, and helps differentiate between the threes subtypes of ADHD. A score above 90% in its subscales indicates attention deficit, hyperactivity/ impulsivity problems, or both. | |
Wisc-IV R | TEA Company | The WISC-IV by Wechsler (2005) is a tool that assesses individual intelligence in children and adolescents between the ages of 6 years and 16 years 11 months. | |
QEEG | Neurobics pocket | Q-EEG (quantified electroencephalogram) is a computerized EEG system, adapted by Toomin, which provides levels of cortical activation through the beta/theta ratio. It measures attention in general, independently of the task to be performed. | |
NIR-HEG | Brain trainer company | it is a tool used to measure blood oxygenation in expressly selected areas. The nir-HEG employs the translucent property of biological tissue, and low-frequency red and infrared lights with light emitting diodes (LED optodes). | |
AULA Nesplora | Nesplora Company | It is a Continuous Performance Test that evaluates attention, impulsivity, processing speed, and motor activity in participants between 6 and 16 years of age. The task is performed in a virtual reality environment, which is shown through three-dimensional (3D) glasses (Head Mounted Display, HMD) equipped with motion sensors and headphones. | |
T.O.V.A (Test of Variables of Attention) | The T.O.V.A. Company | T.O.V.A. 8 kit | T.O.V.A. is an objective, accurate, and FDA cleared continuous performance test (CPT) that measures the key components of attention and inhibitory control. The T.O.V.A. is used by qualified healthcare professionals as an aid in the assessment of attention deficits, including attention-deficit/hyperactivity disorder (ADHD), in children and adults. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved