A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Unobtrusive sensors and pervasive computing technology incorporated into the daily home life of older adults enables meaningful health and activity changes to be recorded continuously for months to years, providing ecologically valid, high frequency, multi-domain data for research or clinical use.
An end-to-end suite of technologies has been established for the unobtrusive and continuous monitoring of health and activity changes occurring in the daily life of older adults over extended periods of time. The technology is aggregated into a system that incorporates the principles of being minimally obtrusive, while generating secure, privacy protected, continuous objective data in real-world (home-based) settings for months to years. The system includes passive infrared presence sensors placed throughout the home, door contact sensors installed on exterior doors, connected physiological monitoring devices (such as scales), medication boxes, and wearable actigraphs. Driving sensors are also installed in participants' cars and computer (PC, tablet or smartphone) use is tracked. Data is annotated via frequent online self-report options that provide vital information with regard to the data that is difficult to infer via sensors such as internal states (e.g., pain, mood, loneliness), as well as data referent to activity pattern interpretation (e.g., visitors, rearranged furniture). Algorithms have been developed using the data obtained to identify functional domains key to health or disease activity monitoring, including mobility (e.g., room transitions, steps, gait speed), physiologic function (e.g., weight, body mass index, pulse), sleep behaviors (e.g., sleep time, trips to the bathroom at night), medication adherence (e.g., missed doses), social engagement (e.g., time spent out of home, time couples spend together), and cognitive function (e.g., time on computer, mouse movements, characteristics of online form completion, driving ability). Change detection of these functions provides a sensitive marker for the application in health surveillance of acute illnesses (e.g., viral epidemic) to the early detection of prodromal dementia syndromes. The system is particularly suitable for monitoring the efficacy of clinical interventions in natural history studies of geriatric syndromes and in clinical trials.
Prevailing clinical research is fraught with limitations in the reliability and validity of data captured because of inherent shortcomings of assessment methodology. Interviews are constrained by the times when the clinician and patient can coordinate schedules. Time allotted for examinations is limited by what the volunteer can reasonably be asked to do in a single session. These brief, widely spaced sessions - even if augmented by occasional telephone calls or Internet queries - severely limit the potential to detect meaningful change in function or wellbeing over time. Current test sessions are largely composed of requests for information that can be difficult to recall and verify (e.g., "do you remember to take your medications?") or performance of artificial tasks (e.g., "stand up and sit down as fast as you can"; "remember these ten words"). The assessments are often designed to restrict test-to-test variability when in fact variability in performance itself may be a key diagnostic feature. Further, these brief biopsies of time are conducted under artificial conditions rather than within the normal flow of day-to-day life. Therefore, they are of limited ecological validity. Finally, the current paradigm inherently cannot provide direct linkage of interdependent key events or outcomes (e.g., sleep, socialization, physical activity) because the data are not time-stamped other than as recalled.
An approach to overcoming these shortcomings lies in the development of systems that can be embedded in home or community that take advantage of advances in pervasive computing and sensing technology, wireless communications, and high frequency multi-domain data analytics. The technology and experience in this area are growing and a number of systems have been developed, but have been limited in deployment, features or longitudinal experience1,2,3,4. In this manuscript, we describe a protocol developed as a means to provide real-time, continuous and longitudinal home-based assessment of health-relevant data to improve upon the limitations of the current health assessment paradigm. Oregon Center for Aging & Technology (ORCATECH) has developed a home-based system based on pervasive computing and sensing technology to provide continuous, real-time assessment of health-relevant activity and behavior. Bringing the assessment into home to enable largely unobtrusive and continuous monitoring of real-world activity substantially overcomes current limitations. First, since the core system is embedded in the life-space of the participants as part of their ambient environment, it is inherently convenient. Assessments requiring discrete responses can be collected when a person is most at ease and, in the case of passive collection methods, as frequently as necessary without burdening a participant. Second, being in the person's normal life-space affords the opportunity to collect data that are immediately ecologically relevant, not simply testing contrived measures of function, but everyday cognition. For example, prospective memory failure, a common complaint difficult to naturalistically test in the clinic, can be assessed at home by automatic daily tracking of medication taking behavior, thus tapping both everyday cognition, as well as a key performance metric known to be sensitive to cognitive change. Third, because the data are digital and time-stamped, measurement of multiple interrelated measures aligned in time is facilitated. For example, time on the telephone and time out of home (measures of social engagement or withdrawal), computer use (measuring initiation, psychomotor activity and cognitive function), and other measures that have been shown to change with functional decline (sleep behavior, weight, walking speed) can add to the sensitivity of the sensor net to distinguish subtle changes that may not be otherwise apparent. Importantly, the effect of health and life events on cognition and function (e.g., weekly reports of pain, medication change, low mood) can also be linked to this data stream as they occur. Finally, conventional testing and queries can be presented via computer or related interfaces (e.g., tablet, smartphone), providing unparalleled opportunities to simultaneously compare legacy test performance to novel digitally derived measures from the same tests, such as response or pause times, learning curves and intra-test variability. This new approach thus transforms current assessment to be more convenient, unobtrusive, continuous, multi-domain and naturalistic. Ultimately, the basic platform of in-home sensor based assessment technology and methodology, provides a system that can be tuned and scaled to address a wide range of specific research questions related to health and wellbeing with noted advantages over the current accepted practice of infrequent clinic or telephone-based assessments.
The following protocol outlines the process of deploying this platform for unobtrusive in-home behavioral and health-related data collection. In developing this platform, a key goal has been to provide a basic suite of assessment functions that can provide the data necessary to infer both general domains of health and well-being (physical, cognitive, social, emotive), as well as more specific behaviors (e.g., medication taking, walking, sleep-related activities, physiologic activity). The development of the platform has been guided by several principles including using the most passive unobtrusive sensing approaches, minimizing direct user engagement with technology, being technology 'agnostic' (i.e., employing the best devices or technical solutions rather than requiring a particular approach or product), being durable (for long-term assessment) and scalable, and minimizing hands-on maintenance.
The platform described has evolved over the past twelve years, importantly informed by a range of end-users, from "digitally naive" to early adopters. Periodic surveys and focus groups have been key to informing this development5,6,7. Hundreds of volunteers have allowed the systems to be continuously deployed in their homes for up to eleven years with iterative modifications being introduced based on the advances in technology, new functional capacities requested by the research community, and the key constant input of individuals living in home where the technology has been deployed. Collectively, these volunteers have formed a "living" laboratory in the community which we call the "Life Laboratory" where their homes and the continuous data collected throughout the day provide a unique level of details about health, activity, and the life course.
A basic platform of sensing technology forms the backbone of the overall system for capturing continuous home-based data. The elements of this platform are described subsequently. The core platform is modified (elements may be added or removed) based on the information obtained during the process of gathering user attitudes, and beliefs and outcome measures of interest for the study using the research platform. Because data communication protocols are standardized, the system has been designed to allow any device that follows these protocols to be incorporated into the network.
The basic platform described here is based on the use case of volunteers in the Life Laboratory (LL) who consent to have the platform deployed within their homes to collect naturalistic activity and behavior data of their normal life activities for many years (longest current continuous deployment = 11 years).
The hub computer and Ethernet/WiFi connection allow data collection from system devices and transmission back to secure servers at ORCATECH without participant interference. The hub computer is configured to the specific participant and home set-up upon system installation using a laptop or tablet and a control panel that connects to a centralized digital participant management system. Additional data collection devices (such as sensors, MedTracker, and scale) can be configured by communicating with the hub computer in the same way.
The ORCATECH Console and Remote Technology Management System is a custom digital technology and data management system called "Console" that allows participant home technology configuration and system set-up, as well as ongoing remote technology management of homes including secure data collection and monitoring. In addition, to facilitate deployment of the system in the community where each home may have a unique layout, a graphing tool based on a tablet interface is used to automatically record where various sensors are located and their valid physical adjacencies to other sensors (Figure 2). This is important for reference during remote monitoring of the system at the home level.
Passive infrared (PIR) Motion Sensors are digitally assigned to a given home during system installation, communicating with the hub computer via a wireless USB Dongle. One sensor is placed per room to sense motion within the room and participant transitions from room to room. A straight "Sensor Line" of four sensors is placed on the ceiling of a hallway or other area where the participant walks regularly at a consistent pace. This sensor line allows unobtrusive gathering of walking speed many times per day. Other metrics can be derived from these activity sensors such as dwell time or number of room transitions. Door contact sensors are placed around the home at all external doors to detect participants' coming and going from the home, and on the refrigerator to determine general frequency of food access.
On-Line Weekly Health and Activity Self-Reports are required to make optimal sense of the data from the passive system of collection devices. These data are critical to the analysis of participant report of events in the home relative to the sensor collected data. The online weekly self-report survey can be completed on any computing device (e.g., laptop, tablet, smartphone) with an Internet connection to query participants about trips out of the home, visitors in the home, health changes, space changes within the home, loneliness, depression, and pain level. Weekly data collection relies on a relatively short window of recollection, which provides much higher resolution of data and likelihood of accuracy than, for instance, annual or semi-annual check-ups. Furthermore, this self-report process also allows investigators to examine passive indicators of potential cognitive impairment, such as variation in the time to complete the survey, variation in number of clicks, increased difficulties reporting accurate dates, or impairment markers in free text responses. As part of the basic platform, we install a seven day electronic pill box that records whether or not the designated day's compartment was opened and the time(s) that it was opened each day. This provides information about medication adherence as well as a potential indication of cognitive decline if consistency of medication-taking decreases.
A wireless digital bioimpedence scale that also collects pulse, body composition metrics, pulse wave velocity, environmental temperature, and ambient carbon dioxide level is installed in the bathroom, providing data on participants' daily weight. This data can then be correlated with other reported events (e.g., health status, medications), as well as other passive indicators of behavior, such as protocol adherence and frequency of use over time.
In cases where our participants drive, we install a driving sensor in their vehicles. This sensor provides information about driving habits such as frequency, timing, duration, and distance of trips, as well as frequency of hard stops or hard accelerations.
A wrist worn wearable device collects physical activity data both in and out of the home. Several brands and models of wearables have been used in Life Laboratory homes.
Depending on the project, an investigator using the ORCATECH platform may choose to supplement the basic sensor set with additional data-collection components. Examples tested in the past include a phone sensor to monitor socialization through landline phone activity, the development and implementation of a digital balance-board for balance testing, a tablet with periodic cognitive tasks for the participant to complete in their own home, and an automated texting system to evaluate the efficacy of medication reminders via phone.
To handle the diverse data generated by the ORCATECH Life Lab, a tailored information and data system is used for collecting, annotating, maintaining, and analyzing copious activity and health data. ORCATECH has developed a custom system for participant management, self-report data collection and processing, and continuous data collection from all system devices and sensors. The system relies on a distributed NoSQL Cassandra server cluster to store the sensor data and a lambda architecture using Kafka and Spark which allows our data processing capabilities to move closer to real-time processing. Using a REST API, data is transferred into standard data analysis platforms and statistical software programs for data analysis.
Access restricted. Please log in or start a trial to view this content.
All participants provided written informed consent. Life Laboratory participants are asked to live their lives as they normally would to allow longitudinal observational study of their life activities and patterns for the rest of their lives. They may withdraw at any time if they wish. The study protocol was approved by the Oregon Health & Science University (OHSU) Institutional Review Board (Life Laboratory OHSU IRB #2765).
1. Preparation
2. Home Deployment
3. System Confirmation
Access restricted. Please log in or start a trial to view this content.
The ORCATECH suite of technology makes it possible to collect a uniquely rich data set about the life patterns of people as they go about their usual activities. The sensor system allows unobtrusive and continuous monitoring of the volunteers in their own homes. The system has been used in dozens of studies involving hundreds of volunteers in research examining key domains of health and function such as walking speed and mobility, medication-taking behavior, mood, time in or out of home, ...
Access restricted. Please log in or start a trial to view this content.
We have described a basic system or platform enabling home- and community-based remote sensing and reporting of salient health and wellbeing measures on a continuous basis. The system is intended to be used primarily in research at this time.
Where possible, the system uses open source tools and sensors or devices taking advantage of available APIs and software development kits (SDK). The system is designed to be technology "agnostic" such that a wide variety of sensors or devices can ...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The research described here was supported by grants from the National Institutes of Health, National Institute on Aging (U2CAG054397, P30 AG024978, P30 AG008017, R01 AG042191, R01 AG024059), Intel, the Foundation for the National Institutes of Health and the Robert Wood Johnson Foundation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Raspberry Pi 3 Model B | Raspberry Pi Foundation | Raspberry Pi 3 Model B | |
Motion Sensor | NYCE Sensors Inc | NCZ-3041-HA | |
Door/Window Sensor | NYCE Sensors Inc | NCZ-3011-HA | |
Curtain Motion Sensor | NYCE Sensors Inc | NCZ-3045-HA | |
iSort | TimerCap | iSort | |
Home Stealth USB Phone Recorder | Fiho | Fi3001B | |
Automatic Pro | Automatic | AUT-350C | |
Body Cardio Scale | Nokia | WBS04 | |
Activite/Steel Activity Monitor | Nokia | HWA01 STEEL | |
Alta 2 | Fitbit | FB406 | |
Charge 2 | Fitbit | FB407 | |
Flex 2 | Fitbit | FB403 | |
Zigbee USB Stick | Silicon Labs | ETRX3USB | |
WorkTime | Nestersoft | WorkTime Corporate |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved