JoVE Logo
Faculty Resource Center

Sign In

Abstract

Chemistry

Generation of Electronic Cigarette Aerosol by a Third-Generation Machine-Vaping Device: Application to Toxicological Studies

Published: August 25th, 2018

DOI:

10.3791/58095

1Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 2Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, 3SCIREQ Scientific Respiratory Equipment Inc.

Electronic-cigarette (e-cig) devices use heat to produce an inhalable aerosol from a liquid (e-liquid) composed mainly of humectants, nicotine, and flavoring chemicals. The aerosol produced includes fine and ultrafine particles, and potentially nicotine and aldehydes, which can be harmful to human health. E-cig users inhale these aerosols and, with the third-generation of e-cig devices, control design features (resistance and voltage) in addition to the choice of e-liquids, and the puffing profile. These are key factors that can significantly impact the toxicity of the inhaled aerosols. E-cig research, however, is challenging and complex mostly due to the absence of standardized assessments and to the numerous varieties of e-cig models and brands, as well as e-liquid flavors and solvents that are available on the market. These considerations highlight the urgent need to harmonize e-cig research protocols, starting with e-cig aerosol generation and characterization techniques. The current study focuses on this challenge by describing a detailed step-by-step e-cig aerosol generation technique with specific experimental parameters that are thought to be realistic and representative of real-life exposure scenarios. The methodology is divided into four sections: preparation, exposure, post-exposure analysis, plus cleaning and maintenance of the device. Representative results from using two types of e-liquid and various voltages are presented in terms of mass concentration, particle size distribution, chemical composition and cotinine levels in mice. These data demonstrate the versatility of the e-cig exposure system used, aside from its value for toxicological studies, as it allows for a broad range of computer-controlled exposure scenarios, including automated representative vaping topography profiles.

Tags

Keywords Electronic Cigarette

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved