JoVE Logo
Faculty Resource Center

Sign In

Abstract

Chemistry

Solution-Processed "Silver-Bismuth-Iodine" Ternary Thin Films for Lead-Free Photovoltaic Absorbers

Published: September 27th, 2018

DOI:

10.3791/58286

1Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 2Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University

Bismuth-based hybrid perovskites are regarded as promising photo-active semiconductors for environment-friendly and air-stable solar cell applications. However, poor surface morphologies and relatively high bandgap energies have limited their potential. Silver-bismuth-iodine (Ag-Bi-I) is a promising semiconductor for optoelectronic devices. Therefore, we demonstrate the fabrication of Ag-Bi-I ternary thin films using material solution processing. The resulting thin films exhibit controlled surface morphologies and optical bandgaps according to their thermal annealing temperatures. In addition, it has been reported that Ag-Bi-I ternary systems crystallize to AgBi2I7, Ag2BiI5, etc. according to the ratio of the precursor chemicals. The solution-processed AgBi2I7 thin films exhibit a cubic-phase crystal structure, dense, pinhole-free surface morphologies with grains ranging in size from 200 to 800 nm, and an indirect bandgap of 1.87 eV. The resultant AgBi2I7 thin films show good air stability and energy band diagrams, as well as surface morphologies and optical bandgaps suitable for lead-free and air-stable single-junction solar cells. Very recently, a solar cell with 4.3% power conversion efficiency was obtained by optimizing the Ag-Bi-I crystal compositions and solar cell device architectures.

Tags

Keywords Solution processable

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved