A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for the synthesis and characterization of cerium oxide nanoparticles (nanoceria) for ROS (reactive oxygen species) scavenging in vivo, nanoceria imaging in plant tissues by confocal microscopy, and in vivo monitoring of nanoceria ROS scavenging by confocal microscopy.
Reactive oxygen species (ROS) accumulation is a hallmark of plant abiotic stress response. ROS play a dual role in plants by acting as signaling molecules at low levels and damaging molecules at high levels. Accumulation of ROS in stressed plants can damage metabolites, enzymes, lipids, and DNA, causing a reduction of plant growth and yield. The ability of cerium oxide nanoparticles (nanoceria) to catalytically scavenge ROS in vivo provides a unique tool to understand and bioengineer plant abiotic stress tolerance. Here, we present a protocol to synthesize and characterize poly (acrylic) acid coated nanoceria (PNC), interface the nanoparticles with plants via leaf lamina infiltration, and monitor their distribution and ROS scavenging in vivo using confocal microscopy. Current molecular tools for manipulating ROS accumulation in plants are limited to model species and require laborious transformation methods. This protocol for in vivo ROS scavenging has the potential to be applied to wild type plants with broad leaves and leaf structure like Arabidopsis thaliana.
Cerium oxide nanoparticles (nanoceria) are widely used in living organisms, from basic research to bioengineering, due to their distinct catalytic reactive oxygen species (ROS) scavenging ability1,2,3. Nanoceria have ROS scavenging abilities due to a large number of surface oxygen vacancies that alternate between two oxidation states (Ce3+ and Ce4+) 4,5,6. The Ce3+ dangling bonds effectively scavenge ROS while the lattice strains at the nanoscale prom....
1. Growing A. thaliana Plants
PNC synthesis and characterization.
PNC were synthesized, purified and characterized following the method described in Protocol Section 2. Figure 1A shows the coloration of the solutions of cerium nitrate, PAA, the mixture of cerium nitrate and PAA, and PNC. A color change from white to light yellow is seen after PNC is synthesized. After purification with a 10 kDa filter, PNC were characterize.......
In this protocol, we describe PNC synthesis, characterization, fluorescent dye labeling, and confocal imaging of the nanoparticles within plant mesophyll cells to exhibit their in vivo ROS scavenging activity. PNC are synthesized from a mixture of cerium nitrate and PAA solution in ammonium hydroxide. PNC are characterized by absorption spectrophotomery and the concentration determined using Beer-Lamberts law. Zeta potential measurements confirmed the negatively charged surface of PNC for enhancing delivery to c.......
This work was supported by the University of California, Riverside and USDA National Institute of Food and Agriculture, Hatch project 1009710 to J.P.G. This material is based upon work supported by the National Science Foundation under Grant No. 1817363 to J.P.G.
....Name | Company | Catalog Number | Comments |
Cerium (III) nitrate hexahydrate | Sigma-Aldrich | 238538-100G | |
Molecular Biology Grade Water, Corning | VWR | 45001-044 | |
Falcon 50 mL Conical Centrifuge Tubes | VWR | 14-959-49A | |
Poly (acrylic acid) 1,800 Mw | Sigma-Aldrich | 323667-100G | |
Fisherbrand Digital Vortex Mixer | Fisher Scientific | 02-215-370 | |
Fisherbrand Digital Vortex Mixer Accessory, Insert Retainer | Fisher Scientific | 02-215-391 | |
Fisherbrand Digital Vortex Mixer Accessories: Foam Insert Set | Fisher Scientific | 02-215-395 | |
Ammonium hydroxide solution | Sigma-Aldrich | 05002-1L | |
PYREX Griffin Beakers, Graduated, Corning | VWR | 13912-149 | |
RCT basic | IKA | 3810001 | |
Eppendorf Microcentrifuge 5424 | VWR | 80094-126 | |
Amicon Ultra-15 Centrifugal Filter Units | Millipore-Sigma | UFC901024 | |
Allegra X-30 Series Benchtop Centrifuge | Beckman Coulter | B06314 | |
UV-2600 Sptecrophotometer | Shimadzu | UV-2600 120V | |
Whatman Anotop 10 syringe filter | Sigma-Aldrich | WHA68091102 | |
BD Disposable Syringes with Luer-Lok Tips | Fisher Scientific | 14-829-45 | |
Zetasizer Nano S | Malvern Panalytical | Zen 1600 | |
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate | Sigma-Aldrich | 42364-100MG | |
Dimethyl Sulfoxide, ACS | VWR | BDH1115-1LP | |
Sunshine Mix #1 LC1 | Green Island Distributors, Inc | 5212601.CFL080P | |
Adaptis 1000 | Conviron | A1000 | |
TES, >99% (titration | Sigma-Aldrich | T1375-100G | |
Magnesium chloride | Sigma-Aldrich | M8266-1KG | |
Air-Tite All-Plastic Norm-Ject Syringe | Fisher Scientific | 14-817-25 | |
Kimberly-Clark Professional Kimtech Science Kimwipes Delicate Task Wipers | Fisher Scientific | 06-666A | |
Carolina Observation Gel | Carolina | 132700 | |
Corning microscope slides, frosted one side, one end | Sigma-Aldrich | CLS294875X25-72EA | |
Cork Borer Sets with Handles | Fisher Scientific | S50166A | |
Perfluorodecalin | Sigma-Aldrich | P9900-25G | |
Micro Cover Glasses, Square, No. 1 | VWR | 48366-045 | |
Leica Laser Scanning Confocal Microscope TCS SP5 | Leica Microsystems | TCS SP5 | |
2′,7′-Dichlorofluorescin diacetate | Sigma-Aldrich | D6883-250MG | |
Dihydroethidium | Sigma-Aldrich | D7008-10MG | |
Fisherbrand Premium Microcentrifuge Tubes: 1.5 mL | Fisher Scientific | 05-408-129 | |
Eppendorf Uvette cuvettes | Sigma-Aldrich | Z605050-80EA | |
Chlorophyll meter | Konica Minolta | SPAD-502 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved