JoVE Logo
Faculty Resource Center

Sign In

Abstract

Bioengineering

Construction of a Multilayered Mesenchymal Stem Cell Sheet with a 3D Dynamic Culture System

Published: October 20th, 2018

DOI:

10.3791/58624

1Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, 2Department of Developmental and Regenerative Biology, Jinan University, 3Nansha College Preparatory Academy, 4Department of Cardiology, First Affiliated Hospital of Jinan University
* These authors contributed equally

Stem cell therapy shows a promising future in regenerating injured organ and tissues, and the cell sheet technique has been developed to improve the low cell retention and poor survival within the target zone. However, during the in vitro construction process, a solution for maintaining stem cell bioactivity and increasing the cell amount within the cell sheet is urgently needed. Here, this protocol presents a method for constructing a multilayered cell sheet with favorable stem cell bioactivity and optimal operability. Decellularized porcine pericardium (DPP) is prepared by phospholipase A2 (PLA2) decellularization method as the cell sheet scaffold, and rat bone marrow mesenchymal stem cells (BMSCs) are isolated and expanded as the seeded cells. The temporary multilayered cell sheet structure is constructed by using RAD16-I peptide hydrogel. Finally, the cell sheet is cultured with a dynamic perfusion system to stabilize the three-dimensional (3D) structure, and the cell sheet could be obtained following a 48-hour culture in vitro. This protocol provides an efficient and feasible method for constructing a multilayered stem cell sheet, and the cell sheet could be developed as a favorable stem cell therapy product in the future.

Tags

Keywords Mesenchymal Stem Cell

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved