This protocol demonstrates the ability to utilize reactive inkjet printing to print self-motile biocompatible and environmentally friendly micro-stirrers for use in biomedical and environmental applications.
In this study, a protocol for using reactive inkjet printing to fabricate enzymatically propelled silk swimmers with well-defined shapes is reported. The resulting devices are an example of self-propelled objects capable of generating motion without external actuation and have potential applications in medicine and environmental sciences for a variety of purposes ranging from micro-stirring, targeted therapeutic delivery, to water remediation (e.g., cleaning oil spills). This method employs reactive inkjet printing to generate well-defined small-scale solid silk structures by converting water soluble regenerated silk fibroin (silk I) to insoluble silk fibroin (silk II). These structures are also selectively doped in specific regions with the enzyme catalase in order to produce motion via bubble generation and detachment. The number of layers printed determines the three-dimensional (3D) structure of the device, and so here the effect of this parameter on the propulsive trajectories is reported. The results demonstrate the ability to tune the motion by varying the dimensions of the printed structures.
Artificial self-propelled micro-stirrers (SPMSs) employ a variety of propulsion mechanisms to produce motion, which can be categorized as either chemical propulsion1,2,3,4,5,6 or physical external propulsion. A common chemical propulsion mechanism is to use catalytic or enzymatic activity to either generate motion producing gradients or generate bubbles that impart momentum to the object when they detach. Previous studies have investigated several catalytic and chemical SPMSs, including polystyrene beads with platinum nanoparticles and chromium adsorbed on the surface1, gold-platinum bimetallic Janus nano-rods2, magnesium Janus micro-stirrers3, micro-stirrers made of a magnesium core and titanium dioxide shell with embedded gold nanoparticles4, and silk fibroin Janus micro-rockets with catalase embedded within the scaffold5. Physical propulsion mechanisms include magnetic7,8, optical9, and ultrasonic10 propulsion systems, all being controlled by an external physical source. Depending on the intended application, SPMS size can range from a few nanometers to several hundreds of micrometers. Examples of potential applications of these abovementioned and other SPMSs are medical diagnosis of diseases with lab-on-a-chip devices11, loading and in vivo targeted delivery of therapeutics12, environmental remediation3 (e.g., cleaning oil spills), and photocatalytic degradation of chemical and biological warfare agents, such as Bacillus anthracis and nerve agents4. Target application dependent, it is therefore desirable to be able to produce SPMSs that undergo specific trajectories such as long linear trajectories for transport challenges or rotational trajectories for micro mixing applications. The focus here is on rotational motion for stirring applications.
There is no single established method to fabricate SPMSs, but for medical and environmental applications, it is essential to use a material that is biocompatible, biodegradable, eco-friendly, readily available, cheap and allows easy fabrication of complex SPMSs without requiring sophisticated equipment. Regenerated silk fibroin (RSF) is one such material that fulfils all these parameters along with being also approved by the Food and Drug Administration (FDA).
Silk is a generic term used for several naturally occurring fibrous proteins, of which, the most commonly known is the one made by the larvae of silk moth, Bombyx mori, before its pupation. These cocoons are made of fibroin, a fibrous protein, stuck together with another protein called sericin. Silk fibroin (SF) has been found to have excellent mechanical properties, biocompatibility, and biodegradability13, which makes it an ideal choice for fabricating SPMSs. SF exists in three polymorphic forms, namely, silk I, II, and III. Silk I is a water-soluble metastable form containing mainly helixes and random coils; silk II is a water-insoluble form containing mainly antiparallel β sheets of crystallized silk; and silk III is a threefold polyglycine II helical structure that exists at the water-air interface of the silk solution. Similar to other fibrous proteins, SF has repeating units of amino acid sequences. The naturally occurring SF of a cocoon consists of three main hexapeptide domains of such repeating units (GAGAGX), while X can be A, S, or Y. Through hydrogen binding, the (GA)n motifs from antiparallel β sheet structures further stack through van der Waals forces and form hydrophobic nano crystallizations14,15.
Biocompatibility can be further improved by seeking to drive propulsion using naturally occurring enzymes to generate a concentration gradient or gas bubbles in a liquid medium (fuel). Consequently, in this study, the enzyme catalase is used as the "engine" to generate propulsion with hydrogen peroxide being used as the aqueous fuel medium. Catalase is an enzyme found in almost all living organisms. It catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen16. The release of oxygen bubbles from the enzyme sites of the SPMSs generates a force onto the object causing it to undergo propulsion in the opposite direction of the bubble release5 (Figure 1).
In a catalytically driven SPMS, different positioning of the catalytic site results in different propulsion behaviour and trajectories1. In pursuit of generating efficient micro-stirrers, it is therefore, necessary to fabricate stirrers with well-defined geometric shapes and engine positions and compare the different powers of the engine. Here, to facilitate these investigations, it is described how regenerated silk fibroin SPMSs are fabricated at millimeter scale using reactive inkjet printing (RIJ) technology. Inkjet printing is a non-contact method for the deposition of materials. This makes the fabrication of small complex structures with high precision in generating various shapes straightforward. RIJ takes place when two or more different reacting materials are deposited and react on the substrate to produce the desired product material. Therefore, SPMSs printed with one catalytic stirrer site off center gives the object asymmetry that results in rotational motion. This approach also makes it simple to manufacture micro-stirrers in a variety of shapes and design configurations defined by computer-aided design (CAD), thus allowing easier and more accurate controllability on the desired movement during practical applications. Finally, the ability of printing devices with varying thickness that exhibit different propulsion properties is demonstrated.
This study provides a blueprint for manufacturing SPMSs with RSF at micrometer to millimeter scale. The use of RIJ technology for manufacturing RSF micro-stirrers opens the door for the highly versatile production of micro-stirrers from materials such as in situ produced scaffolds or hydrogels, which are not otherwise able to be deposited or fabricated through other means such as evaporation. After appropriate further functionalization (e.g., enzymes), these SPMSs can be suitable for environmental remediation3, such as cleaning biological toxins, organic pollutants, and chemical and biological warfare agents4.
CAUTION: Please consult relevant material safety datasheets before use of hydrogen peroxide, sodium carbonate, ethanol, calcium chloride, and methanol. Ensure to wear all appropriate personal protective equipment including engineering controls while handling chemicals used in this protocol.
1. Extraction of fibroin
2. Drying of fibroin
3. Dissolution of fibroin
4. Dialysis of fibroin solution
5. Determination of RSF solution concentration
6. Preparation of inks for printing
7. Reactive inkjet 3D printing
NOTE: The inkjet printer used in these experiments is based on piezo actuated jetting devices with glass nozzles. There are several commercially available inkjet printers for research that can duplicate these functions.
8. Data acquisition/tracking and trajectory analysis of self-propelled stirrers
9. Characterization of SPMSs by SEM
After boiling the silk, it is expected that the dried fibers are around one third lighter than before, indicating the successful removal of sericin. During the dissolution of the silk in Ajisawa's reagent, the fibers should be completely dissolved, and a yellow viscous liquid should be recovered. After dialysis, the silk solution should be less viscous but still show a slightly yellow color. If the silk has turned into gel, this indicates that dissolution was not done successfully.
Stable droplets formed from the jetting devices will enable the higher definition of the printed samples. Figure 2 shows an example of a stable single droplet to give good printing results such as the printed silk-stirrers shown in Figure 4. It is normal, depending how viscous the ink is, that spreading occurs on the substrate.
Depending on the inkjet printers used and the droplet size, the distance between each printed droplet needs to be adjusted in such a way that they overlap to generate connected lines. If the droplets are too far apart, the printed structure will break up. In addition to this, if not enough layers are printed, there is a chance of the micro-stirrers breaking when placed into fuel solution. Once the stirrers have been removed off the substrate and washed, placing them into the hydrogen peroxide fuel solution should instantly result in bubbles being formed. The success rate of good bubble release depends strongly on the enzyme activity; if the enzyme activity is low, fewer bubbles will form thus leading to poor propulsion results. Figure 5 shows how the surface morphology of the stirrers is altered due to the bubbles being released from the inner structures generating small pores. A successful micro-stirrer will look similar to the ones that can be seen in Figure 6 and the two Supplemental Videos S1 and S2 respectively.
Figure 6 shows still video frames of two representative, 100-layer (Figure 6A) and 200-layer (Figure 6B) micro-stirrers in 5% H2O2 fuel. The red and green lines indicate the trajectories tracked (see Supplemental Videos S1 and S2). The rotational velocity can be determined by the rate of change of orientation (ɸ, Figure 3) as shown in Figure 7. Comparison of 100-layer and 200-layer catalase doped micro-stirrers shows a distinctive increase in rotational velocity of ~0.6 fold from 60 ± 6 rpm to 100 ± 10 rpm (Figure 7).
Figure 1: Schematic illustration of the catalytic breakdown of hydrogen peroxide into water and oxygen by catalase embedded in the stirrer's scaffold at desired locations (shown in red). The product oxygen bubbles provide the necessary propulsion for moving the stirrer. Please click here to view a larger version of this figure.
Figure 2: The time lapse images of the droplet formation of RSF from a jetting device (nozzle diameter 80 µm). The numbers below the images represent the time elapsed, in microseconds (µs), since the initiation of jetting of the silk ink droplet. Please click here to view a larger version of this figure.
Figure 3: Schematic representation of particle tracking over two consecutive frames. A and B indicate tracking points and C indicates the center of mass. φ indicates the angle of orientation. SPMS trajectory direction is indicated by the curved black arrow. Please click here to view a larger version of this figure.
Figure 4: Light micrograph of a freshly RIJ printed micro-stirrer (100 layers) before washing. Red box denotes catalase doped region (engine region). Please click here to view a larger version of this figure.
Figure 5: SEM images of the main body and catalase engine part of a SPMS after pores are formed due to bubble release. Pores can be clearly seen on the engine surface in the SEM images of the SPMSs originating from the oxygen bubble release. (A) Silk micro-stirrers before exposure to 5% w/v H2O2 fuel solution. (B) Silk SPMS after exposure to 5% w/v H2O2 fuel solution. Images on the right are enlargements of the red regions. Please click here to view a larger version of this figure.
Figure 6: Video frames of two micro-stirrers in 5% fuel solution showing the trajectory over time. (A) 100-layer micro-stirrers. (B) 200-layer micro-stirrers. Please click here to view a larger version of this figure.
Figure 7: Comparison of angle of orientation (φ) for 100-layer (60 ± 6 rpm) and 200-layer (100 ± 10 rpm) micro-stirrers. Please click here to view a larger version of this figure.
Supplemental Video S1: Representative 100-layer self-motile micro-stirrer in 5% w/v H2O2 undergoing propulsion. Please click here to download this file.
Supplemental Video S2: Representative 200-layer self-motile micro-stirrer in 5% w/v H2O2 undergoing propulsion. Please click here to download this file.
A key feature of SPMSs produced in this protocol is the ability to quickly and easily design different shapes and structures via RIJ of silk doped with enzymes such as catalase and achieve chemically driven motion via bubble propulsion5. This together with the high biocompatibility18 of these stirrers makes them highly desirable for future applications for both water remediation challenges as well as for lab-on-a-chip applications for medical diagnosis devices.
Here, the propulsion ability is demonstrated by utilizing a simple line design with an engine part printed to the side of it as shown in Figure 1. The red dots represent the catalytically active catalase doped engine parts and the blue dots represent the inactive parts. To be able to generate 3D shapes via RIJ, it is necessary to print multiple layers in order to generate a z-axes height. Here, the numbers of layers deposited onto a Si-wafer were 100 and 200. By varying the number of layers, a difference in propulsion velocity/rotation comparable to depositing double the amount of material can be found. In order to have well-defined structures during inkjet printing, it is important that the correct jetting parameters are selected in order to achieve a well-defined droplet as shown in Figure 2. These parameters will vary according to the ink used and the jetting devices. If the ink does not produce stable droplets, then the ink is most likely no longer suitable for printing and is most likely starting to turn into gel. It is important to note that the resolution limit strongly depends on the size of nozzle used, and smaller nozzles allow for higher resolution and smaller structures/particles being printed.
An example of RIJ printed silk stirrer is shown in Figure 4, where the catalase doped engine part (as indicated by the red marked region) can be seen attached to the side of the main body (also see the schematic in Figure 1 for details). The printed silk scaffold is a material that allows for the fuel solution to diffuse throughout the entire 3D structure, and thus oxygen bubbles are formed during the decomposition of hydrogen peroxide via catalase. The oxygen bubbles being released generate micron-scale pores in the silk scaffold structure as can be seen by comparing the SEM micrographs before exposure to H2O2 fuel (Figure 5A) and after H2O2 exposure (Figure 5B). In order to ensure that motion is due to the decomposition of H2O2 fuel but not surface tension driven via the release of PEG400, it is important that stirrers are initially immersed in water for a period of at least 10 min and tested in DI water for surface tension motion prior to propulsion in fuel solution.
The use of PEG400 allows for better release of bubbles from the silk surface19 as previously explained by Gregory et al.5 but can also give rise to surface tension driven propulsion, which may be desirable depending on the application as previously described20. This second mechanism also gives the opportunity to produce SPMSs with two mechanisms that are time dependant and can be advantageous for certain applications that would for example expect initial vigorous stirring at the start followed by slower continued stirring for extended periods of time20.
In conclusion, by using RIJ to produce autonomous self-propelled devices, a vast range of shapes and sizes can be easily designed and printed. Silk as a base material for the devices gives opportunities to easily encapsulate enzymes and other moieties into the structures giving the possibility to add functions to these devices.
The authors would like to acknowledge support from the EPSRC via X. Zhao's reactive inkjet printing of silk materials awards (EP/N007174/1 and EP/N023579/1), S. J. Ebbens Career Acceleration Fellowship, and Healthcare Technology Impact Fellowship (EP/J002402/1 and EP/N033736/1). The authors also thank Dr. Qingyou Xia from the State Key Laboratory of Silkworm Genome Biology, Southwest University, China for providing silk cocoons.
Name | Company | Catalog Number | Comments |
Sodium Carbonate | Alfa Aesar | 11552 | anhydrous, 99.5%, granular |
Calcium Chloride | Fluka Analytical | C1016 | anhydrous, >93%, granular |
Ethanol | Fisher Scientific | 10542382 | HPLC grade |
PEG-400 | Aldrich Chemistry | 202398 | average Mn 400, tetramer mol wt ~250 kDa |
Catalase | Sigma Life Science | E3289 | >20K units |
Methanol | Acros Organics | 268280025 | HPLC grade |
Hydrogen Peroxide | Sigma Aldrich | 31642 | 30% (w/w) |
Silk | Southwest University, China | NA | Raw Cleaned Silk Cocoons, Bombox Mori |
Dialysis Tubes | Sigma Aldrich | D9777 | Cellulose, avg, flat width 25 mm, Typical molecular weight cut-off = 14000 |
Fisherbrand Hoffman Clips | Fisher Scientific | 12744396 | Clips used to close the ends of the dialysis tubes |
Si-Wafer | Sigma Aldrich | 647535 | Used as printing substrate |
Balance | OHAUS Pioneer | PA214C | Analytical Balance |
Conductivity meter | Mettler Toledo | FG3 | Mettler Toledo FiveGo Portable conductivity meter |
Centrifuge | Thermo Scientific | 10355052 | Heraeus Biofuge fresco sold by Thermo Scientific |
Hotplate | Stuart | US152 | Stuart US152 Magnetic Stirrer |
Camera | PixeLink | PL-D732CU-T | High Speed Colour Camera |
Lens | Navitar | Navitar 1-60135 | Macro Zoom Lens |
Jetting Devices | Microfab Technologies Inc. | MJ-AT-01-40-8MX | 80um nozzle diameter Jetting device |
MJ-AT-01-80-8MX | 80um nozzle diameter Jetting device | ||
Lightpad | AGPTEK | UN-HL0245-EUUN | Light for the swimming experiment |
Pipettors | Eppendorf | 3123000063 | single-channel, variable, 100 – 1,000 µL, blue |
3123000055 | single-channel, variable, 20 – 200 µL, yellow | ||
Microscope | Nikon | LV100ND | Manual, upright microscope |
SEM | Fei | F50 | Used for Scanning electron micrographs |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved