JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Bioengineering

Seeding and Implantation of a Biosynthetic Tissue-engineered Tracheal Graft in a Mouse Model

Published: April 1st, 2019

DOI:

10.3791/59173

1Department of Otolaryngology Head & Neck Surgery, Nationwide Children's Hospital, 2The Ohio State University College of Medicine, 3Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, 4Center for Perinatal Research, Nationwide Children's Hospital, 5Nanofiber Solutions, Inc., 6Department of Pediatric Surgery, Nationwide Children's Hospital

* These authors contributed equally

Abstract

Treatment options for congenital or secondary long segment tracheal defects have historically been limited due to an inability to replace functional tissue. Tissue engineering holds great promise as a potential solution with its ability to integrate cells and signaling molecules into a 3-dimensional scaffold. Recent work with tissue engineered tracheal grafts (TETGs) has seen some success but their translation has been limited by graft stenosis, graft collapse, and delayed epithelialization. In order to investigate the mechanisms driving these issues, we have developed a mouse model for tissue engineered tracheal graft implantation. TETGs were constructed using electrospun polymers polyethylene terephthalate (PET) and polyurethane (PU) in a mixture of PET and PU (20:80 percent weight). Scaffolds were then seeded using bone marrow mononuclear cells isolated from 6-8 week-old C57BL/6 mice by gradient centrifugation. Ten million cells per graft were seeded onto the lumen of the scaffold and allowed to incubate overnight before implantation between the third and seventh tracheal rings. These grafts were able to recapitulate the findings of stenosis and delayed epithelialization as demonstrated by histological analysis and lack of Keratin 5 and Keratin 14 basal epithelial cells on immunofluorescence. This model will serve as a tool for investigating cellular and molecular mechanisms involved in host remodeling.

Explore More Videos

Keywords Tissue engineered Tracheal Graft

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved