A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
In order to observe ultrastructure of insect sensilla, scanning and transmission electron microscopy (SEM and TEM, respectively) sample preparation protocol were presented in the study. Tween 20 was added into the fixative to avoid sample deformation in SEM. Fluorescence microscopy was helpful for improving slicing accuracy in TEM.
This report described sample preparation methods that scanning and transmission electron microscope observations, demonstrated by preparing appendages of the woodboring beetle, Chlorophorus caragana Xie & Wang (2012), for both types of electron microscopy. The scanning electron microscopy (SEM) sample preparation protocol was based on sample chemical fixation, dehydration in a series of ethanol baths, drying, and sputter-coating. By adding Tween 20 (Polyoxyethylene sorbitan laurate) to the fixative and the wash solution, the insect body surface of woodboring beetle was washed more cleanly in SEM. This study's transmission electron microscopy (TEM) sample preparation involved a series of steps including fixation, ethanol dehydration, embedding in resin, positioning using fluorescence microscopy, sectioning, and staining. Fixative with Tween 20 enabled penetrate the insect body wall of woodboring beetle more easily than it would had been without Tween 20, and subsequently better fixed tissues and organs in the body, thus yielded clear transmission electron microscope observations of insect sensilla ultrastructures. The next step of this preparation was determining the positions of insect sensilla in the sample embedded in the resin block by using fluorescence microscopy to increase the precision of target sensilla positioning. This improved slicing accuracy.
Scanning electron microscopy is an important tool in many morphology studies, that SEM shows surface structures1,2. Transmission electron microscopy's appeal is that it can be used to study a wide range of biological structures at the nanometer scale, from the architecture of cells and the ultrastructure of organelles, to the structure of macromolecular complexes and proteins. TEM shows inner structures3,4,5.
Coleoptera is the largest group of insects, including about 182 families and 350,000 species. Most of the coleopteran insects, in particular woodboring beetle, feed on plants, many of which are important pests of forests and fruit trees, causing devastating damage to trees6. At present, prevention and control population of pests based on chemical ecology theory have received increasing attention7. Efficient, low-toxic, pollution-free pheromone control methods have become an effective way8. Studying the sensilla morphology and ultrastructure of insects is an important part of insect chemical ecology research. The scanning and transmission electron microscopy (SEM and TEM, respectively) are used to great effect to study their morphology and internal anatomy. However, during preparation of insect samples for electron microscopy (EM), the objectivity and authenticity of the observation site may be affected9. In general, SEM sample preparation of insects requires cleaning, tissue fixation, dehydration, metathesis, drying, and sputter-coating10. Due to the complex environment in which woodboring beetle live, the body surface often has various pollutants and their appendages often have many fine long sensilla or bristles. In particular, some woodborers are not available from laboratory raising, which collected directly in the field, and then put into fixing fluid to ensure freshness and subsequently washed in the laboratory. If the sample is first fixed and then washed, obviously it is much more difficult to remove debris because glutaraldehyde strongly fixes it to the sample. Tween 20 is a surfactant11,12,13,14, which plays an important role in the washing process, including reducing the surface tension of water and improving the wettability of water on the surface of the laundry. In this study, Tween 20 was added to the fixing solution and PBS cleaning solution to reduce the surface tension of the liquid, and prevent the dirt from depositing on the body surface of the woodboring beetle, which made the body surface cleaner in SEM.
Using TEM, sensilla on different organs of insects can be sliced to reveal the clear structures inside them, thus providing a basis for analyzing sensilla functions. When the subject insect, such as woodboring beetle, is large, and its body wall has a substantial degree of sclerotization, so the fixative may not fully saturate organ tissues inside the insect body. Tween 20 can enhance the dispersion and suspension capacity of the dirt. In this study, Tween 20 was added to the fixative to enhance fixative fluid penetration into the insect body wall of woodboring beetle, avoiding deformation and collapse of the epidermi11,12,13. In addition, using general slicing technology, it is difficult to accurately locate different types of sensilla, in particular for some small sensilla15. Based on traditional TEM sample preparation, this study combined fluorescence microscopy and SEM to determine the position of insect sensilla in the embedded block, thus improving slicing accuracy.
CAUTION: Consult the material safety data sheets of reagents before using them. Several of the chemicals used during sample preparation are toxic, mutagenic, carcinogenic, and/or reprotoxic. Use personal protective equipment (gloves, lab coat, full-length pants, and closed-toe shoes) and work under a fume hood while handling the sample.
1. SEM Sample Preparation and Imaging
2. TEM Sample Preparation and Imaging
Figure 1: A fluorescent microscope photographed a resin block enclosing the appendage of the Chlorophorus caragana. (A) Antenna resin block; (B) Resin block at the end of the ovipositor. The arrow indicated the edge of the resin block; dotted circle indicates the target sensilla. Please click here to view a larger version of this figure.
Figure 2: Procedures of the precise sensilla location method. (A) The 4th sub-segment of a maxillary palp of Chlorophorus caragana, the dotted circle showed the sensilla targeted by SEM. (B) The 4th sub-segment of a maxillary palp of C. caragana viewed by fluorescence microscopy. White arrow showed the roughly cut edge of the resin block and the dotted circle showed the accurate location. (C) The marked distance from the edge of the resin block to the maxillary palp target location (28 µm in this sample). Please click here to view a larger version of this figure.
Using cleaning and fixative solution with Tween 20, cleaner SEM image was observed than that without Tween 20 (Figure 3). Tween 20 fixing solution penetrated the glutaraldehyde fixing solution into the tissue. Microtubule structure was clearly seen. TEM image of the internal structure of the sample was blurred without Tween 20 (Figure 4).
In this article, we presented a sample preparation scheme for scanning and transmission electron microscopy for woodboring beetle. Using insect appendage as a representative study subject, we demonstrated several improvements over traditional sample preparation methods.
The liquid oil detached from the solid surface is emulsified into small droplets, which can be well dispersed and suspended in the washing medium to reduce redepositing on the surface of the object. Washing performance of surfa...
We have no conflict of interest to disclose.
We appreciate the generous assistance of the Beijing Vocational College of Agriculture, the Institute for the Application of Atomic Energy (Chinese Academy of Agricultural Science), the Bioresearch Center of Beijing Forestry University and Professor Shan-gan Zhang of the Institute of Zoology, Chinese Academy of Sciences. This research was supported by National Key R&D Program of China (2017YFD0600103), the National Natural Science Foundation of China (Grant No. 31570643, 81774015), Forest Scientific Research in the Public Welfare of China (201504304), Inner Mongolia Agricultural University High-level Talent Research Startup Plan (203206038), and Inner Mongolia Autonomous Region Higher Education Research Project (NJZZ18047), Inner Mongolia Autonomous Region Linxue "Double First-class" Construction Project (170001).
Name | Company | Catalog Number | Comments |
Anatomical lens | Chongqing Auto Optical limited liability company | 1425277 | |
Carbon adhesive tape | SPI Supplies, Division of Structure Probes, Inc. | 7311 | |
Carbon tetrachloride | Sigma | 56-23-5 | |
Copper grids | GilderGrids | G300 | |
Disodium hydrogen phosphate | Sinopharm group chemical reagent co., LTD | 10039-32-4 | |
Ethanol | J.T. Baker | 64-17-5 | |
Flat embedding molds | Hyde Venture (Beijing) Biotechnology Co., Ltd. | 70900 | |
Fluorescence microscope | LEICA | DM2500 | |
Glutaraldehyde | Sigma-Aldrich | 111-30-8 | Anhydrous EM Grade |
Isophorone | Sigma | 78-59-1 | |
Lead citrate | Sigma | 512-26-5 | |
Methanol | Sigma | 67-56-1 | |
Monobasic sodium phosphate | Its group chemical reagent co., LTD | 7558-80-7 | |
Objective micrometer | Olympus | 0-001-034 | |
Osmium tetroxide | Sigma | 541-09-3 | |
Petri dish | Aldrich | 1998 | |
Razor blade | Gillette | ||
Resin | Spurr | ERL4221 | |
Scalpel | Lianhui | GB/T19001-2008 | |
SEM | Hitachi | S-3400 | |
Silica gel desiccant | Suzhou Longhui Desiccant Co., Ltd. | 112926-00-8 | |
Small brush | Martol | G1220 | |
Sodium hydroxide | Sigma | 1310-73-2 | |
Sputter ion instrument | Hitachi Koki Co. Ltd., Tokyo, Japan | E-1010 | |
Stereo microscope | Leica | EZ4 HD | |
TEM | Hitachi | H-7500 | |
Tween 20 | Tianjin Damao Chemical Reagent | 9005-64-5 | |
Ultramicrotome | Leica | UC6 | |
Ultrasonic cleaner | GT Sonic | GT-X1 | |
Uranyl acetate | Sigma | 6159-44-0 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved