A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this work, we prepared an adsorbent composed of the cationic N,N-dimethylamino propylacrylamide methyl chloride quaternary (DMAPAAQ) polymer gel and iron hydroxide for adsorbing arsenic from groundwater. The gel was prepared via a novel method designed to ensure the maximum content of iron particles in its structure.
In this work, we prepared an adsorbent composed of a cationic polymer gel containing iron hydroxide in its structure designed to adsorb arsenic from groundwater. The gel we selected was the N,N-dimethylamino propylacrylamide methyl chloride quaternary (DMAPAAQ) gel. The objective of our preparation method was to ensure the maximum content of iron hydroxide in the structure of the gel. This design approach enabled simultaneous adsorption by both the polymer structure of the gel and the iron hydroxide component, thus, enhancing the adsorption capacity of the material. To examine the performance of the gel, we measured reaction kinetics, carried out pH sensitivity and selectivity analyses, monitored arsenic adsorption performance, and conducted regeneration experiments. We determined that the gel undergoes a chemisorption process and reaches equilibrium at 10 h. Moreover, the gel adsorbed arsenic effectively at neutral pH levels and selectively in complex ion environments, achieving a maximum adsorption volume of 1.63 mM/g. The gel could be regenerated with 87.6% efficiency and NaCl could be used for desorption instead of harmful NaOH. Taken together, the presented gel-based design method is an effective approach for constructing high-performance arsenic adsorbents.
Water pollution is a great environmental concern, motivating researchers to develop methods for removing contaminants such as arsenic from wastewaster1. Among all the reported methods, adsorption processes are a relatively low cost approach for heavy metal removal2,3,4,5,6,7. Iron oxyhydroxide powders are considered to be one of the most efficient adsorbents for extracting arsenic from aqueous solutions8,9. Still, these materials suffer from a number of drawbacks, including early saturation times and toxic synthetic precursors. Additionally, there is a severe adverse effect in the water quality when these adsorbents are used for a long period of time10. An additional separation process, such as sedimentation or filtration, is then needed to purify the contaminated water, which increases the cost of the production further8,11.
Recently, researchers have developed polymer gels such as cationic hydrogels, microgels, and cryogels that have demonstrated efficient adsorption properties. For example, an arsenic removal rate of 96% was achieved by the cationic cryogel, poly(3-acrylamidopropyl) trimethyl ammonium chloride [p(APTMACl)]12. Additionally, at pH 9, approximately 99.7% removal efficiency was achieved by this cationic hydrogel13. At pH 4, 98.72 mg/g of maximum arsenic adsorption capacity was achieved by the microgel, based on tris(2-aminoethyl) amine (TAEA) and glyceroldiglycidyl ether (GDE), p(TAEA-co-GDE)14. Although these gels demonstrated good adsorption performances, they failed to effectively remove arsenic from water at neutral pH levels, and their selectivities in all studied environments were not reported15. A maximum adsorption capacity of 227 μg/g of was measured when Fe(III)-Sn(IV) mixed binary oxide-coated sand was used at a temperature of 313 K and a pH of 716. Alternatively, Fe-Zr binary oxide-coated sand (IZBOCS) has also been used to remove arsenic and achieved a maximum adsorption capacity of 84.75 mg/g at 318 K and a pH of 717. Other reported adsorbents suffer from low adsorption performances, lack of recyclability, low stability, high operational and maintenance costs, and the use of hazardous chemicals in the synthesis process4.
We sought to address the above limitations by developing a material with improved arsenic adsorption performance, high selectivity in complex environments, recycling capability, and efficient activity at neutral pH levels. Therefore, we developed a cationic gel composite of N,N-dimethylamino propylacrylamide methyl chloride quaternary (DMAPAAQ) gel and iron(III) hydroxide (FeOOH) particles as an adsorbent for arsenic removal. We chose to combine FeOOH with our gel because FeOOH increases the adsorption of both forms of arsenic18. In this study, our gel composite was designed to be non-porous and was impregnated with FeOOH during preparation. In the next section, the details of the gel preparation method, including our strategy for maximizing the content of FeOOH is discussed further.
CAUTION: Arsenic is extremely toxic. Please use gloves, long sleeve clothing, and experimental goggles at all times during the experiment to prevent any contact of arsenic solution with the skin and eyes. If arsenic comes into contact with any part of your body, wash it immediately with soap. Additionally, please clean up the experimental surroundings regularly so that you and others do not come into contact with arsenic, even when the experiment is not being performed. The symptoms of arsenic exposure may appear after a long period of time. Prior to cleaning the equipment, first rinse it with clean water and dispose the water separately into an experimental waste container designated for arsenic. Then, clean the equipment well with detergent. To prevent arsenic contamination of the environment, take precautions while disposing of arsenic samples. Dispose of them separately into experimental waste containers designated for arsenic. After the adsorption or desorption experiment is performed, the gels contain a high amount of arsenic. Therefore, dispose of the gels separately to a designated experimental waste bin for only arsenic-containing gels.
1. Synthesis of the DMAPAAQ+FeOOH gel composite
2. pH sensitivity analyses
3. Arsenic adsorption experiment
4. Selectivity analyses of the DMAPAAQ+FeOOH gel
5. Equilibrium rate analyses
6. Regeneration analysis
Figure 1 describes the experimental setup for the preparation of the DMAPAAQ+FeOOH gel. Table 1 illustrates the compositions of the materials involved in the preparation of the gel.
Figure 2 shows the relation of contact time with the adsorption of arsenic by the DMAPAAQ+FeOOH gel. In the figure, the amount of adsorption of arsenic was examined at 0.5, ...
The main advancement of our developed method is the unique design strategy of the gel composite. The purpose of our gel preparation method was to maximize the amount of iron content in the gel. During the preparation, we added FeCl3 and NaOH to the “initiator solution” and the “monomer solution,” respectively. Once the monomer solution was mixed with the initiator solution, there was a reaction between FeCl3 and NaOH, producing FeOOH inside the gel. This phenomenon ensured ma...
The authors have nothing to disclose.
This research was supported by the JSPS KAKENHI Grant Number (26420764, JP17K06892). The contribution of Ministry of Land, Insfrastructure, Transport and Tourism (MLIT), Government of Japan under ‘Construction Technology Research and Development Subsidy Program’ to this research is also recognized. We also acknowledge the contribution of Mr. Kiyotaka Senmoto to this research. Ms. Adele Pitkeathly, Senior Writing Advisor Fellow from Writing Center of Hiroshima University is also acknowledged for English corrections and suggestions. This research was selected for oral presentation in 7th IWA-Aspire Conference, 2017 and Water and Environment Technology Conference, 2018.
Name | Company | Catalog Number | Comments |
N,N’-dimethylamino propylacrylamide, methyl chloride quaternary (DMAPAAQ) (75% in H2O) | KJ Chemicals Corporation, Japan | 150707 | |
N,N’-Methylene bisacrylamide (MBAA) | Sigma-Aldrich, USA | 1002040622 | |
Sodium sulfite (Na2SO3) | Nacalai Tesque, Inc., Japan | 31922-25 | |
Sodium sulfate (Na2SO4) | Nacalai Tesque, Inc., Japan | 31916-15 | |
Di-sodium hydrogenarsenate heptahydrate(Na2HAsO4.7H20) | Nacalai Tesque, Inc., Japan | 10048-95-0 | |
Ferric chloride(FeCl3) | Nacalai Tesque, Inc., Japan | 19432-25 | |
Sodium hydroxide(NaOH) | Kishida Chemicals Corporation, Japan | 000-75165 | |
Ammonium peroxodisulfate (APS) | Kanto Chemical Co. Inc., Japan | 907W2052 | |
Hydrochloric acid (HCl) | Kanto Chemical Co. Inc., Japan | 18078-01 | |
Sodium Chloride (NaCl) | Nacalai Tesque, Inc., Japan | 31320-05 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved