A subscription to JoVE is required to view this content. Sign in or start your free trial.
Crystallization-driven self-assembly (CDSA) displays the unique ability to fabricate cylindrical nanostructures of narrow length distributions. The organocatalyzed ring-opening polymerization of ε-caprolactone and subsequent chain extensions of methyl methacrylate and N,N-dimethyl acrylamide are demonstrated. A living CDSA protocol that produces monodisperse cylinders up to 500 nm in length is outlined.
The production of monodisperse cylindrical micelles is a significant challenge in polymer chemistry. Most cylindrical constructs formed from diblock copolymers are produced by one of three techniques: thin film rehydration, solvent switching or polymerization-induced self-assembly, and produce only flexible, polydisperse cylinders. Crystallization-driven self-assembly (CDSA) is a method which can produce cylinders with these properties, by stabilizing structures of a lower curvature due to the formation of a crystalline core. However, the living polymerization techniques by which most core-forming blocks are formed are not trivial processes and the CDSA process may yield unsatisfactory results if carried out incorrectly. Here, the synthesis of cylindrical nanoparticles from simple reagents is shown. The drying and purification of reagents prior to a ring-opening polymerization of ε-caprolactone catalyzed by diphenyl phosphate is described. This polymer is then chain extended by methyl methacrylate (MMA) followed by N,N-dimethyl acrylamide (DMA) using reversible addition−fragmentation chain-transfer (RAFT) polymerization, affording a triblock copolymer that can undergo CDSA in ethanol. The living CDSA process is outlined, the results of which yield cylindrical nanoparticles up to 500 nm in length and a length dispersity as low as 1.05. It is anticipated that these protocols will allow others to produce cylindrical nanostructures and elevate the field of CDSA in the future.
One-dimensional (1D) nanostructures, such as cylinders, fibers and tubes, have garnered increasing attention in a variety of fields. Amongst these, their popularity in polymer science is owed to their rich variety of properties. For example, Geng et al. demonstrated that filomicelles exhibit a tenfold increase in residence time in the bloodstream of a rodent model compared to their spherical counterparts, and Won et al. revealed that polybutadiene-b-poly(ethylene oxide) fiber dispersions display an increase in storage modulus by two orders of magnitude upon crosslinking of the core during rheological measurements1,2. Interestingly, many of these systems are synthesized via the self-assembly of block copolymers, whether this be through more traditional methods of solvent switching and thin-film rehydration3, or more advanced methods such as polymerization-induced self-assembly and crystallization-driven self-assembly (CDSA)4,5. Each technique holds their own advantages, however, only CDSA can produce rigid particles with a uniform and controllable length distribution.
Pioneering work by Gilroy et al. formed long polyferrocenylsilane-b-polydimethylsiloxane (PFS-PDMS) cylinders in hexanes and, when using mild sonication, very short cylinders with a low contour length dispersity (Ln). Upon the addition of a predetermined mass of diblock copolymer chains in a common solvent, cylinders of varying lengths with an Ln as low as 1.03 were synthesised5,6. Further work by the Manners group highlighted the high degree of control possible with the PFS system, which may be used to form remarkably complex and hierarchal structures: block-co-micelles, scarf shaped and dumbbell micelles to name a few7,8. Following these demonstrations, researchers investigated other, more functional systems for CDSA including: semi-crystalline commodity polymers (polyethylene, poly(ε-caprolactone), polylactide)9,10,11,12,13 and conducting polymers (poly(3-hexylthiophene), polyselenophene)14,15. Armed with this toolbox of diblock copolymer systems that can be assembled quickly and efficiently, researchers have carried out more application-driven research in recent years16. Jin et al. have demonstrated exciton diffusion lengths in the hundreds of nanometers in polythiophene block copolymers and our group demonstrated the formation of gels from poly(ε-caprolactone) (PCL) containing cylindrical constructs10,17.
Although it is a powerful technique, CDSA does have its limitations. The block copolymers must have a semi-crystalline component, as well as low dispersity values and high end group fidelities; lower order block contaminants may cause particle aggregation or induce morphology changes18,19. Due to these restrictions, living polymerizations are used. However, significant reagent purification, drying procedures and water/oxygen free environments are required in order to achieve polymers with the aforementioned properties. Attempts have been made to design systems that overcome this. For example, PFS block copolymers have been formed using click chemistry to couple polymer chains together20. Although the resulting cylindrical nanoparticles have demonstrated exemplary properties, the block copolymers are typically purified by preparative size exclusion chromatography and the synthesis of PFS still requires the use of living anionic polymerizations. Our group recently realized the living CDSA of PCL, the success of which revolved around using both living organobase-catalyzed ring-opening polymerizations (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerizations10. Although this method is simpler, living polymerizations are still required.
As the field is moving towards more application-driven research, and due to the problems associated with living polymerizations, it is believed that an outline of the polymer synthesis and self-assembly protocols will be advantageous to future scientific work. Thus, in this manuscript, the complete synthesis and self-assembly of a PCL-b-PMMA-b-PDMA copolymer is outlined. Drying techniques will be highlighted in the context of an organocatalyzed ROP of ε-caprolactone and the subsequent RAFT polymerizations of MMA and DMA will be outlined. Finally, a living CDSA protocol for this polymer in ethanol will be presented and common errors in characterization data due to poor experimental technique will be critiqued.
1. Drying of toluene
NOTE: If you have access to dry solvent towers, collect the toluene and degas by five freeze-pump-thaw cycles.
2. Drying of the CTA-initiator/DPP
3. Drying/Purification of ε-caprolactone
NOTE: For this section, all glassware and stirrer bars must have been dried in a 150 °C oven overnight prior to use. This will remove all water from the surfaces of the glass.
4. Ring opening polymerization of ε-caprolactone
5. RAFT polymerization of methyl methacrylate and N,N-dimethylacrylamide
6. Self-nucleation, seed generation and living crystallization-driven self-assembly
PCL was analyzed by 1H NMR spectroscopy and gel permeation chromatography (GPC). The 1H NMR spectrum yielded a degree of polymerization (DP) of 50, by comparison of resonances at 3.36 ppm and 4.08 ppm, which correspond to the end group ethyl protons and the in-chain ester α-protons respectively (Figure 1b). This provided validation of the molecular weight values obtained by GPC where a single peak, with a dispersity value of 1.07, w...
The synthesis and living CDSA of the triblock copolymer PCL50-PMMA10-PDMA200 has been outlined. Although stringent conditions are required, the ring-opening polymerization of ε-caprolactone gave polymers with excellent properties that enabled the successful chain extensions of MMA and DMA. These polymers were successful in their self-seeding, obtaining a pure phase of cylindrical micelles, which were sonicated into seed particles of LN 98 nm. Through simple additi...
The authors have nothing to disclose.
There are no acknowledgments.
Name | Company | Catalog Number | Comments |
2,2'-azobisisobutyrnitrile | Sigma Aldrich | ||
250 mL ampoule | |||
250 mL two neck RBF | |||
Ampoule (25 mL) | |||
B19 tap | |||
B24 stopper | |||
Basic Alumina | Fluka | ||
Buchner Flask | |||
Buchner Funnel | |||
Caclium Hydride | |||
Cannulae | |||
caprolactone | Arcos Organics | ||
Chain Transfer Agent | Made in House | ||
Conical Flask (multiple sizes) | |||
Dessicator | |||
Diethyl Ether | Merck | ||
Dioxane | Fisher | ||
diphenylphosphate | Sigma Aldrich | ||
Distillation Condenser | |||
Ethanol | Fisher | ||
Filter Paper (multiple sizes) | |||
Gel Permeation Chrmoatography Instrument | Agilent Technologies Infinity 1260 II | Running DMF at 50 °C | |
Glovebox | Mbraun, Unilab | ||
Hotplate | IKA, RCT basic | ||
Mercury Thermometer | |||
Methyl Methacrylate | Sigma Aldrich | ||
Molecular seives | Fisher | MS/1030/53 | |
N,N-dimethyl acrylamide | Sigma Aldrich | ||
NMR spectrometer | Bruker 400 MHz | ||
Phosphorus pentoxide | Sigma Aldrich | ||
RBF (multiple sizes) | |||
Schlenk Cap (B24) | |||
Schlenk Flask (250 mL) | |||
Schlenk Line | |||
Sonication Probe | Bandelin Sonoplus | ||
Suba Seal (multiple sizes) | |||
TEM grids | EmResolutions, Formvar/carbon film 300 mesh copper | ||
THF | Merck | ||
three neck adaptor | |||
Toluene | Fisher | ||
Transmission Electron Microscope | Jeol 2100 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved