Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Macrophages, especially primary macrophages, are challenging to transfect as they specialize in detecting molecules of non-self origin. We describe a protocol that allows highly efficient transfection of primary macrophages with mRNA generated from DNA templates such as plasmids.

Abstract

Macrophages are phagocytic cells specialized in detecting molecules of non-self origin. To this end, they are equipped with a large array of pattern recognition receptors (PRRs). Unfortunately, this also makes macrophages particularly challenging to transfect as the transfection reagent and the transfected nucleic acids are often recognized by the PRRs as non-self. Therefore, transfection often results in macrophage activation and degradation of the transfected nucleic acids or even in suicide of the macrophages. Here, we describe a protocol that allows highly efficient transfection of murine primary macrophages such as peritoneal macrophages (PM) and bone marrow-derived macrophages (BMDM) with mRNA in vitro transcribed from DNA templates such as plasmids. With this simple protocol, transfection rates of about 50-65% for PM and about 85% for BMDM are achieved without cytotoxicity or immunogenicity observed. We describe in detail the generation of mRNA for transfection from DNA constructs such as plasmids and the transfection procedure.

Introduction

Macrophages are phagocytic cells that specialize in detecting, ingesting and degrading microbes, apoptotic cells and cellular debris. Moreover, they help to orchestrate immune responses by secreting cytokines and chemokines and by presenting antigens to T cells and B cells. Macrophages also play important roles in numerous other processes, such as wound healing, atherosclerosis, tumorigenesis and obesity.

To be able to detect non-self molecules such as pathogen-associated molecular patterns (PAMPs) and out-of-place molecules such as damage-associated molecular patterns (DAMPs), macrophages are equipped with a large array of pattern recognit....

Protocol

Macrophage isolation from mice was performed in accordance with the Animal Protection Law of Germany in compliance with the Ethics Committee at the University of Cologne.

NOTE: Carry out all steps wearing gloves. Carry out all transfection steps under a laminar flow hood to prevent contamination of the cells. Before working with mRNA, clean all instruments such as pipettes and every surface with 70% ethanol and/or a RNAse-degrading surfactant (Table of Materials

Representative Results

We have successfully used this protocol to generate mRNA encoding for FLAG-tagged NEMO and IKKβ variants for transfection of primary macrophages16. The plasmids encoding for FLAG-tagged wild-type (NEMOWT) and C54/347A mutant NEMO (NEMOC54/374A) (see the Table of Materials) already contain a T7 promotor in the correct orientation (Figure 1A). Thus, we only had to linearize the.......

Discussion

Here we present a protocol for highly efficient transfection of usually hard-to-transfect primary macrophages with in vitro transcribed mRNA. Importantly, transfection of the macrophages using this protocol does not induce cell death or activate proinflammatory signaling indicating that neither the transfection reagent nor the transfected mRNA are recognized as non-self.

The quality of the mRNA is of key importance for successful transfection of macrophages using this protocol. Thus, great car.......

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 670).

....

Materials

NameCompanyCatalog NumberComments
5-methyl-CTP (100 mM)Jena BiosienceNU-1138Sstored at -20 °C
Antarctic phosphataseNew England BioLabsM0289stored at -20 °C
Antarctic phosphatase reaction buffer (10X)New England BioLabsB0289stored at -20 °C
anti-NEMO/IKKγ antibodyInvitrogenMA1-41046stored at -20 °C
anti-β-actin antibodySigma-AldrichA2228stored at -20 °C
Petri dishes 92,16 mm with camsSarstedt821,473stored at RT
CD11b Microbeads mouse and humanMiltenyi Biotec130-049-601stored at 4 °C
Cre recombinase + T7-Promotor forward primerSigma-Aldrich5′-GAAATTAATACGACTCACTATA
GGGGCAGCCGCCACCATGTCC
AATTTACTGACCGTAC-3´, stored at -20 °C
Cre recombinase + T7-Promotor reverse primerSigma-Aldrich5′-CTAATCGCCATCTTCCAGCAGG
C-3′, stored at -20 °C
DNA purification kit: QIAquick PCR purification KitQiagen28104stored at RT
eGFP + T7-Promotor forward primerSigma-Aldrich5´-GAAATTAATACGACTCACTATA
GGGATCCATCGCCACCATGGTG
AGCAAGG-3´, stored at -20 °C
eGFP + T7-Promotor reverse primerSigma-Aldrich5´-TGGTATGGCTGATTA
TGATCTAGAGTCG-3´, stored at -20 °C
Fast Digest buffer (10X)Thermo ScientificB64stored at -20 °C
FastDigest XbaIThermo ScientificFD0684stored at -20 °C
high-fidelity polymerase with proofreading: Q5 High-Fidelity DNA-PolymeraseNew England Biolabs IncM0491Sstored at -20 °C
IKKβ + T7-Promotor forward primerSigma-Aldrich5′-GAAATTAATACGACTCACTATA
GGGTTGATCTACCATGGACTACA
AAGACG-3′, stored at -20 °C
IKKβ + T7-Promotor reverse primerSigma-Aldrich5′-GAGGAAGCGAGAGCT-CCATCTG-3′, stored at -20 °C
in vitro mRNA transcription kit: HiScribe T7 ARCA mRNA kit (with polyA tailing)New England BioLabsE2060stored at -20 °C
LS ColumnsMiltenyi Biotec130-042-401stored at RT
MACS MultiStandMiltenyi Biotec130-042-303stored at RT
mRNA transfection buffer and reagent: jetMESSENGERPolyplus transfection409-0001DEstored at 4 °C
Mutant IKKβ IKK-2S177/181E plasmidAddgene11105stored at -20 °C
Mutant NEMOC54/347A plasmidAddgene27268stored at -20 °C
pEGFP-N3 plasmidAddgene62043stored at -20 °C
poly(I:C)Calbiochem528906stored at -20 °C
pPGK-Cre plasmidF. T. Wunderlich, H. Wildner, K. Rajewsky, F. Edenhofer, New variants of inducible Cre recombinase: A novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res. 29, 47e (2001). stored at -20 °C
pseudo-UTP (100 mM)Jena BiosienceNU-1139Sstored at -20 °C
QuadroMACS SeparatorMiltenyi Biotec130-090-976stored at RT
Rat-anti-mouse CD11b antibody, APC-conjugatedBioLegend101212stored at 4 °C
Rat-anti-mouse F4/80 antibody, PE-conjugatedeBioscience12-4801-82stored at 4 °C
recombinant M-CSFPeprotech315-02stored at -20 °C
RNA purification kit: MEGAclear transcription clean-up kitThermoFisher ScientificAM1908stored at 4 °C
RNAse-degrading surfactant: RnaseZAPSigma-AldrichR2020stored at RT
ultrapure LPS from E.coli O111:B4Invivogenstored at -20 °C
Wild type IKKβ plasmidAddgene11103stored at -20 °C
Wild type NEMO plasmidAddgene27268stored at -20 °C

References

  1. Ley, K., Pramod, A. B., Croft, M., Ravichandran, K. S., Ting, J. P. How Mouse Macrophages Sense What Is Going On. Frontiers in Immunology. 7 (204), (2016).
  2. Zhang, X., Edwards, J. P., Mosser, D. M. The expression of exogenous genes....

Explore More Articles

TransfectionPrimary MacrophagesIn Vitro Transcribed MRNARNA TranscriptionPolyA TailingDephosphorylationMRNA PurificationDenaturing Agarose Gel

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved