JoVE Logo

Sign In

Abstract

Genetics

Next-generation Viral RNA/DNA in situ Hybridization Applications in Human Immunodeficiency Virus/Simian Immunodeficiency Virus Research

Published: June 17th, 2020

DOI:

10.3791/60318

1AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., 2Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU)

Abstract

In situ hybridization is a powerful technique to identify specific RNA or DNA sequences within individual cells in tissue sections, providing important insights into physiological processes and disease pathogenesis. In situ hybridization (ISH) has been used for many years to assess the location of cells infected by viruses, but recently a next-generation ISH approach was developed with a unique probe design strategy that allows simultaneous signal amplification and background suppression to achieve single-molecule visualization while preserving tissue morphology. This next-generation ISH is based on an approach like branched PCR, but performed in situ and is more facile, sensitive, and reproducible than classical ISH methods or in situ PCR approaches in routinely detecting RNA or DNA in formalin-fixed paraffin embedded (FFPE) tissues. For the last several years our laboratory has been applying this ISH platform for the detection of human immunodeficiency (HIV) and simian immunodeficiency (SIV) viral RNA (vRNA) and/or viral DNA (vDNA) positive cells within a multitude of FFPE tissues. With this detailed technical manuscript, we would like to share our knowledge and advice with all individuals interested in using next-generation ISH in their research.

Explore More Videos

Keywords In Situ Hybridization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved