A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article describes new approaches to measure and strengthen functionally specific neural pathways with transcranial magnetic stimulation. These advanced noninvasive brain stimulation methodologies can provide new opportunities for the understanding of brain-behavior relations and development of new therapies to treat brain disorders.
Understanding interactions between brain areas is important for the study of goal-directed behavior. Functional neuroimaging of brain connectivity has provided important insights into fundamental processes of the brain like cognition, learning, and motor control. However, this approach cannot provide causal evidence for the involvement of brain areas of interest. Transcranial magnetic stimulation (TMS) is a powerful, noninvasive tool for studying the human brain that can overcome this limitation by transiently modifying brain activity. Here, we highlight recent advances using a paired-pulse, dual-site TMS method with two coils that causally probes cortico-cortical interactions in the human motor system during different task contexts. Additionally, we describe a dual-site TMS protocol based on cortical paired associative stimulation (cPAS) that transiently enhances synaptic efficiency in two interconnected brain areas by applying repeated pairs of cortical stimuli with two coils. These methods can provide a better understanding of the mechanisms underlying cognitive-motor function as well as a new perspective on manipulating specific neural pathways in a targeted fashion to modulate brain circuits and improve behavior. This approach may prove to be an effective tool to develop more sophisticated models of brain-behavior relations and improve diagnosis and treatment of many neurological and psychiatric disorders.
Noninvasive brain stimulation is a promising assessment tool and treatment for many neurological disorders, such as Parkinson's disease, Alzheimer's disease, and stroke1,2,3,4. There is accumulating evidence establishing the relationship between the behavioral manifestations of neurological diseases and abnormalities of cortical excitability, neuroplasticity, cortico-cortical and cortico-subcortical connectivity5,6. Therefore, basic knowledge about brain network dynamics and plasticity in neurological conditions can provide invaluable insight into disease diagnosis, progression, and response to therapy. Functional magnetic resonance imaging (fMRI) is a useful tool to understand the complex relations between brain and behavior in both healthy and diseased brain networks and has the potential to improve treatment based on a network perspective7,8,9. However, fMRI is correlational in nature and cannot provide a causal link between brain function and behavior, nor manipulate functional connectivity to restore abnormal neural circuits associated with behavioral impairments in patients10,11,12. Transcranial magnetic stimulation (TMS) can both causally measure and modulate human brain function and behavior in health and disease3,13,14,15.
TMS is a safe, noninvasive method to stimulate the human brain16,17 and can be used to induce and measure plasticity18. This method can advance our understanding of causal relationships between individual brain areas and behavior10,11,12,19 and their specific functional interactions with other nodes of a brain network20,21,22,23. To date, most studies have focused on the human motor system, given that TMS to the hand area of the motor cortex (M1) can produce motor evoked potentials (MEPs) as physiological readouts for changes associated with motor behavior24, allowing examination of different inhibitory and excitatory circuits at the system level in the human brain25. Recent advances using a conditioning test TMS approach with two coils show that it is possible to measure functional interactions between different cortical areas. In the motor system, dual-site TMS experiments show that inputs from cortical areas interconnected with M1 can change with task demands, age, or disease14,26. Seminal work by Ferbert and colleagues has found that applying a conditioning stimulus to M1 prior to a test stimulus of the other M1 can result in inhibition of the MEP amplitude, a phenomenon known as short interval interhemispheric inhibition (SIHI)28. A number of TMS studies using this approach have also shown that M1 is strongly interconnected with the contralateral M1, ventral premotor cortex (PMv), dorsal premotor cortex (PMd), supplementary motor area (SMA), pre-SMA, primary sensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and posterior parietal cortex (PPC) at rest27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42. Interestingly, the effect of stimulation from these cortical areas on motor cortical excitability are anatomically, temporally, and functionally specific to the ongoing brain activity during the preparation of a movement (state- and context-dependent43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69). However, very few studies using dual-site TMS have characterized patterns of functional cortico-cortical connectivity with motor and cognitive impairments in patients with brain disorders70,71,72. This affords opportunities to develop new methods for assessing and treating motor and cognitive disorders.
Using this technique, it also has been found that repeated pairs of cortical TMS applied to cortical areas interconnected with M1 such as contralateral M168,69,70, PMv76,77,78, SMA71, and PPC80,81,82 can induce changes in synaptic efficiency in specific neural pathways based on the Hebbian principle of associative plasticity83,84,85,86 and enhance behavioral performance72,73,74. Still, few studies have used this approach to study circuit and plasticity dysfunction in neurological disorders2,75,76,77,78,79,80,81,82,83,84,90,91,92,93,94,95,96. It remains to be shown whether strengthening functionally specific neural pathways with TMS can restore activity in dysfunctional circuits, or whether the prospective strengthening of intact circuity can augment resilience97 in brain networks supporting motor and cognitive function across the lifespan and in disease. The lack of fundamental understanding of the neural mechanisms underlying neurological disorders and effects of stimulation on interconnected dysfunctional brain networks limits current treatment.
Despite its capability, TMS has yet to become a standard part of the armamentarium of neuroscience and clinical tools for understanding brain-behavior relations, pathophysiology of brain disorders, and the effectiveness of treatment. Therefore, to realize its potential and support its large-scale application, standardizing TMS methods is important because it is more likely to increase the rigor of future TMS experiments and reproducibility across independent laboratories. This article outlines how TMS can be used to both measure and manipulate functional interactions. Here, we describe this technique in the motor system (e.g., parieto-motor pathway44) by measuring TMS-based output measures (e.g., MEPs), where the method is best understood. However, it is important to note that this protocol also can be adapted to target functional coupling of other subcortical85, cerebellar86,87, and cortical areas.73,74,88 In addition, neuroimaging techniques such as EEG89,90,91 and fMRI92,93 can be used to assess the TMS-induced changes in activity and connectivity26,94. We conclude by proposing that the study of the functional involvement of circuit-level cortical connectivity with these TMS methods in both health and disease makes it possible to develop targeted diagnoses and innovative therapies based on more sophisticated network models of brain-behavior relations.
The following three TMS methods are described below. First, two methods are described to measure cortico-cortical connectivity using dual-site transcranial magnetic stimulation (dsTMS) while participants are either 1) at rest (resting state) or 2) performing an object-directed reach-to-grasp movement (task-dependent). Second, a cortical paired associative stimulation (cPAS) method is described to modulate the interplay between two brain areas in a controlled manner by pairing cortical stimuli (e.g., posterior parietal and primary motor cortices) to strengthen functional specific neural pathways with TMS and induce changes in cortical excitability. A representative data set is provided for each method. All the methods described in this protocol were approved by the University of Michigan Institutional Review Board in accordance with the Declaration of Helsinki.
1. Participant Recruitment
2. Electromyography (EMG) Electrode Placement
3. Localizing Brain Areas for Targeted TMS
4. Localizing Optimal TMS Coil Position and Determining Thresholds
NOTE: In this experiment, CoilM1 refers to the coil used to deliver stimulation to M1, while CoilTwo refers to the coil used to deliver stimulation to the other cortical area of interest (e.g., posterior parietal cortex). Thresholding over M1 must be determined for CoilTwo to calculate the maximum stimulator output (MSO) used over nonmotor areas. Motor threshold values should be reported to allow for comparisons and reproducibility across experiments.
5. Dual-site TMS (Resting State)
6. Dual-site TMS (Task Context)
NOTE: Dual-site TMS also can be used to test whether functional connectivity at rest can be modulated by different task contexts.
7. Cortical Paired Associative Stimulation (cPAS)
NOTE: This protocol involves delivering pairs of monophasic pulses to two different cortical areas over short periods to induce pathway-specific changes in synaptic strength between connections within the human brain. This approach is based on Hebbian principles of spike timing dependent plasticity107,108,109,110. Similar to dual-site TMS methods, cPAS is delivered with two TMS machines connected to two individual TMS coils over two different cortical areas (e.g., PPC and M1).
8. Data Processing and Analysis
Figure 5 shows the size of an exemplar MEP response elicited in the FDI muscle by TMS for an unconditioned test stimuli (TS alone to M1, blue trace) or conditioned stimuli from PPC (CS-TS, red trace) while the participant was at rest (top panel) or planning a goal-directed grasping action to an object (bottom panel). At rest, the PPC exerts an inhibitory influence on ipsilateral M1, as shown by the decrease in MEP amplitudes potentiated by a subthreshold CS delivered over PPC 5 ms before a s...
The dual-site TMS method described here can be employed to investigate functional interactions between different cortical areas interconnected with the primary motor cortex while a participant is at rest or planning a goal-directed action. While brain imaging is correlative, basic knowledge from dual-site TMS methods can reveal causal brain-behavior relations associated with changes in cortico-cortical circuits. In addition, cortical paired associative stimulation with two TMS coils applied in areas interconnected with M...
The authors have nothing to disclose.
This work was supported by the University of Michigan: MCubed Scholars Program and School of Kinesiology.
Name | Company | Catalog Number | Comments |
Alpha B.I. D50 coil (coated) | Magstim | 50mm coil | |
BrainSight 2.0 Software | Rogue Research | Neuronavigation software | |
BrainSight frameless Stereotactic System | Rogue Research | Neuronavigation equiptment | |
D702 Coil | Magstim | 70mm coil | |
Discovery MR750 | General Electric | 3.0T MRI machine | |
Disposable Earplugs | 3M | Foam earplugs | |
ECG Electrodes 30mm x 24mm | Coviden-Kendall | H124SG | Disposable electrodes |
Four Channel Isolated Amplifier | Intronix Technologies Corporation | 2024F | EMG amplifier |
gGAMMAcap | g.tec Medical Engineering | EEG head cap | |
Micro1401-3 | Cambridge Electronic Design | Scientific data recorder and processing machine | |
Nuprep Skin Prep Gel | Weaver and Company | Skin prep abrasive gel | |
Signal v.7 | Cambridge Electronic Design | Data acquisition and analysis software | |
The Magstim BiStim2 | Magstim | Transcranial magnetic stimulator (two 2002 units) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved