A subscription to JoVE is required to view this content. Sign in or start your free trial.
This method describes the steps to improve the quality and quantity of sequence data that can be obtained from formalin-fixed paraffin-embedded (FFPE) RNA samples. We describe the methodology to more accurately assess the quality of FFPE-RNA samples, prepare sequencing libraries, and analyze the data from FFPE-RNA samples.
Gene expression analysis by RNA sequencing (RNA-seq) enables unique insights into clinical samples that can potentially lead to mechanistic understanding of the basis of various diseases as well as resistance and/or susceptibility mechanisms. However, FFPE tissues, which represent the most common method for preserving tissue morphology in clinical specimens, are not the best sources for gene expression profiling analysis. The RNA obtained from such samples is often degraded, fragmented, and chemically modified, which leads to suboptimal sequencing libraries. In turn, these generate poor quality sequence data that may not be reliable for gene expression analysis and mutation discovery. In order to make the most of FFPE samples and obtain the best possible data from low quality samples, it is important to take certain precautions while planning experimental design, preparing sequencing libraries, and during data analysis. This includes the use of appropriate metrics for precise sample quality control (QC), identifying the best methods for various steps during the sequencing library generation, and careful library QC. In addition, applying correct software tools and parameters for sequence data analysis is critical in order to identify artifacts in RNA-seq data, filter out contamination and low quality reads, assess uniformity of gene coverage, and measure the reproducibility of gene expression profiles among biological replicates. These steps can ensure high accuracy and reproducibility for profiling of very heterogeneous RNA samples. Here we describe the various steps for sample QC, library preparation and QC, sequencing, and data analysis that can help to increase the amount of useful data obtained from low quality RNA, such as that obtained from FFPE-RNA tissues.
Use of next-generation sequencing approaches has enabled us to glean a wealth of information from various types of samples. However, old and poorly preserved samples remain unworkable for the commonly used methods of generating sequence data and often require modifications to well-established protocols. FFPE tissues represent such a sample type that has been widely utilized for clinical specimens1,2,3. While FFPE preservation maintains tissue morphology, the nucleic acids in FFPE tissues usually exhibit a wide range of damage and degradation, making it difficult to retrieve t....
1. RNA quantity and quality assessment
The methodology described above was applied to 67 FFPE samples that had been stored under a variety of different conditions for 7–32 years (the median sample storage time was 17.5 years). The dataset and analysis results presented here were previously described and published in Zhao et al.11. On checking the sample quality as described earlier (i.e., example traces in Figure 2), DV100 was found to be more useful than DV200 because it is mor.......
The method described here outlines the main steps required to obtain good sequence data from FFPE-RNA samples. The main points to consider with this method are: (1) Ensure that the RNA is preserved as best as possible after extraction by minimizing the sample handling and freezing and thawing cycles. Separate QC aliquots are very helpful. (2) Use a QC metric that is best for the given sample set. RIN values and DV200 are often not useful for degraded samples, and DV100 may be the metric of choice to.......
We are thankful to Dr. Danielle Carrick (Division of Cancer Control and Population Sciences, National Cancer Institute) for continued help, especially for initiating this study, providing us with the samples, and for helpful suggestions during data analysis. We sincerely thank all members of the CCR Sequencing Facility at the Frederick National Laboratory for Cancer Research for their help during sample preparation and sequencing, especially Brenda Ho for assistance in sample QC, Oksana German for library QC, Tatyana Smirnova for running the sequencers. We also would like to thank Tsai-wei Shen and Ashley Walton at Sequencing Facility Bioinformatics Group for helping ....
Name | Company | Catalog Number | Comments |
2100 Bioanalyzer | Agilent | G2939BA | |
Agilent DNA 7500 Kit | Agilent | 5067-1506 | |
Agilent High Sensitivity DNA Kit | Agilent | 5067-4626 | |
Agilent RNA 6000 Nano Kit | Agilent | 5067-1511 | |
AllPrep DNA/RNA FFPE Kit | Qiagen | 80234 | |
CFX96 Touch System | Bio-Rad | 1855195 | |
Library Quantification kit v2-Illumina | KapaBiosystems | KK4824 | |
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina | New England Biolabs | E7765S | https://www.neb.com/protocols/2017/02/07/protocol-for-use-with-ffpe-rna-nebnext-rrna-depletion-kit |
NEBNext rRNA Depletion Kit (Human/Mouse/Rat) | New England Biolabs | E6310L | |
NextSeq 500 Sequencing System | Illumina | SY-415-1001 | NextSeq 500 System guide: https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/nextseq/nextseq-500-system-guide-15046563-06.pdf |
NextSeq PhiX Control Kit | Illumina | FC-110-3002 | |
NSQ 500/550 Hi Output KT v2.5 (150 CYS) | Illumina | 20024907 | |
10X Genomics Magnetic Separator | 10X Genomics | 120250 | |
Rotator Multimixer | VWR | 13916-822 | |
C1000 Touch Thermal Cycler | Bio-Rad | 1851197 | |
Sequencing reagent kit | Illumina | 20024907 | |
Flow cell package | Illumina | 20024907 | |
Buffer cartridge and the reagent cartridge | Illumina | 20024907 | |
Sodium hydroxide solution (0.2N) | Millipore Sigma | SX0607D-6 | |
TRIS-HCL Buffer 1.0M, pH 7.0 | Fisher Scientific | 50-151-871 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved