A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The present protocol generates mesh-shaped engineered cardiac tissues containing cardiovascular cells derived from human induced pluripotent stem cells to allow the investigation of cell implantation therapy for heart diseases.
The current protocol describes methods to generate scalable, mesh-shaped engineered cardiac tissues (ECTs) composed of cardiovascular cells derived from human induced pluripotent stem cells (hiPSCs), which are developed towards the goal of clinical use. HiPSC-derived cardiomyocytes, endothelial cells, and vascular mural cells are mixed with gel matrix and then poured into a polydimethylsiloxane (PDMS) tissue mold with rectangular internal staggered posts. By culture day 14 ECTs mature into a 1.5 cm x 1.5 cm mesh structure with 0.5 mm diameter myofiber bundles. Cardiomyocytes align to the long-axis of each bundle and spontaneously beat synchronously. This approach can be scaled up to a larger (3.0 cm x 3.0 cm) mesh ECT while preserving construct maturation and function. Thus, mesh-shaped ECTs generated from hiPSC-derived cardiac cells may be feasible for cardiac regeneration paradigms.
Numerous preclinical studies and clinical trials have confirmed the efficiency of cell-based cardiac regenerative therapies for failing hearts1,2,3. Among various cell types, human induced pluripotent stem cells (hiPSCs) are promising cell sources by virtue of their proliferative ability, potential to generate various cardiovascular lineages4,5, and allogenicity. In addition, tissue engineering technologies have made it possible to transfer millions of cells onto a damaged heart5,6,7,8.
Previously, we reported the generation of three-dimensional (3D) linear engineered cardiac tissues (ECTs) from hiPSC-derived cardiovascular lineages using a commercially available culture system for 3D bioartificial tissues5,7. We found that the coexistence of vascular endothelial cells and mural cells with cardiomyocytes within the ECT facilitated structural and electrophysiological tissue maturation. Furthermore, we validated the therapeutic potential of implanted hiPSC-ECTs in an immune tolerant rat myocardial infarction model to improve cardiac function, regenerate myocardium, and enhance angiogenesis5. However, the linear ECTs constructed by this method were 1 mm by 10 mm cylinders and therefore not suitable for the implantation in preclinical studies with larger animals or clinical use.
Based on the successful use of tissue molds to generate porous engineered tissue formation using rat skeletal myoblasts and cardiomyocytes9, human ESC-derived cardiomyocytes10 and mouse iPSCs11, we developed a protocol to generate scalable hiPSC-derived larger implantable tissue using polydimethylsiloxane (PDMS) molds. We evaluated a range of mold geometries to determine the most effective mold characteristics. Mesh-shaped ECTs with multiple bundles and junctions exhibited excellent characteristics in cell viability, tissue function and scalability compared to plain-sheet or linear formats that lacked pores or junctions. We implanted the mesh-shaped ECT in a rat myocardial infarction model and confirmed its therapeutic effects similar to implanted cylindrical ECTs12. Here we describe the protocol to generate a hiPSC-derived mesh-shaped ECT.
1. Maintenance of hiPSCs and cardiovascular differentiation
2. Cell harvest and lineage analysis on differentiation day 13‒15
3. Fabrication of PDMS tissue mold
4. ECT construction
Figure 1A,B shows the schematics of CM+EC and MC protocol. After inducing CMs and ECs from CM+EC protocol and MCs from MC protocol, the cells are mixed adjusting final MC concentrations to represent 10 to 20% of total cells. The 2 cm wide tissue mold is fabricated according to the design drawing from 0.5 mm thick PDMS sheet (Figure 2A,B). Six million of CM+EC+MC cells are combined with collagen I, and matrix and poured onto...
Following the completion of our investigation of a linear format, hiPSC derived ECT5, we adapted the protocol to mix hiPSC-derived CMs, ECs, and MCs to facilitate the in vitro expansion of vascular cells within ECTs and subsequent in vivo vascular coupling between ECTs and recipient myocardium.
To facilitate the generation of larger, implantable mesh ECT geometries we used thin PDMS sheets to design the 3D molds with loading posts arrayed at staggered positions. During ...
The authors have no financial or scientific conflicts to disclose.
This work was financially supported by the Kosair Charities Pediatric Heart Research Program at the University of Louisville and the Organoid Project at the RIKEN Center for Biosystems Dynamics Research. HiPSCs used in our published protocols were provided by the Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
Name | Company | Catalog Number | Comments |
Materials | |||
Cell Culture Dishes 100x20 mm style | Falcon/ Thomas scientific | 9380C51 | |
Multiwell Plates For Cell Culture 6well 50/CS | Falcon / Thomas scientific | 6902A01 | |
Sylgard 184 Silicone Elastomer Kit | Dow Corning | 761036 | |
Reagents | |||
Accumax | Innovative Cell Technologies | AM-105 | |
BMP4, recombinant (10µg) | R&D | RSD-314-BP-010 | |
Collagen, Type I solution from rat tail | Sigma | C3867 | |
Growth factor-reduced Matrigel | Corning | 356231 | |
Human VEGF (165) IS, premium grade | Miltenyi | 130-109-385 | |
Pluronic F-127, 0.2 µm filtered (10% Solution in Water) | Molecular Probes | P-6866 | |
Recombinant human bFGF | WAKO | 060-04543 | |
Recombinant Human/Mouse/Rat ActivinA (50µg) | R&D | 338-AC-050 | |
rh Wnt-3a (10µg) | R&D | 5036-WN | |
Versene solution | Gibco | 15040066 | |
Culture medium and supplements | |||
10x MEM | Invitrogen | 11430 | |
2 Mercaptro Ethanol | SIGMA | M6250 | |
B27 supplement minus insulin | Gibco | A1895601 | |
DMEM, high glucose | Gibco | 11965084 | |
Fetal Bovine Serum (500ml) | Any | ||
Fetal Bovine Serum (500ml) | Any | ||
L-Glutamine | Gibco | 25030081 | |
NaHCO3 | Any | ||
PBS 1x | Gibco | 10010-031 | |
Penicillin-Streptomycin (5000 U/mL) | Gibco | 15070-063 | |
RPMI1640 medium | Gibco | 21870092 | |
αMEM | Invitrogen | 11900024 | |
Flowcytometry | |||
anti-TRA-1-60, FITC, Clone: TRA-1-60, BD Biosciences | BD / Fisher | 560380 | |
anti-Troponin T, Cardiac Isoform Ab-1, Clone: 13-11, Thermo Scientific Lab Vision | Fisher | MS-295-P0 | |
BD FACS Clean Solution | BD | 340345 | |
BD FACSFlow Sheath Fluid | BD | 342003 | |
BD FACSRinse Solution | BD | 340346 | |
EDTA | Any | ||
Falcon Tube with Cell Strainer Cap (Case of 500) | Corning | 352235 | |
Fetal Bovine Serum (500ml) | Any | ||
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, for 405 nm excitation | Molecular Probes | L34957 | |
PDGFRb; anti-CD140b, R-PE, Clone: 28D4, BD Biosciences | BD / Fisher | 558821 | |
Saponin | Sigma-Aldrich | 47306-50G-F | |
VEcad-FITC; anti-CD144, FITC, Clone: 55-7H1, BD Biosciences | BD / Fisher | 560411 | |
Zenon Alexa Fluor 488 Mouse IgG1 Labeling Kit | Molecular Probes | Z25002 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved