A subscription to JoVE is required to view this content. Sign in or start your free trial.
This paper describes a protocol along with a comparative study of two microfluidic fabrication techniques, namely photolithography/wet-etching/thermal-bonding and Selective Laser-induced Etching (SLE), that are suitable for high-pressure conditions. These techniques constitute enabling platforms for direct observation of fluid flow in surrogate permeable media and fractured systems under reservoir conditions.
Pressure limitations of many microfluidic platforms have been a significant challenge in microfluidic experimental studies of fractured media. As a result, these platforms have not been fully exploited for direct observation of high-pressure transport in fractures. This work introduces microfluidic platforms that enable direct observation of multiphase flow in devices featuring surrogate permeable media and fractured systems. Such platforms provide a pathway to address important and timely questions such as those related to CO2 capture, utilization and storage. This work provides a detailed description of the fabrication techniques and an experimental setup that may serve to analyze the behavior of supercritical CO2 (scCO2) foam, its structure and stability. Such studies provide important insights regarding enhanced oil recovery processes and the role of hydraulic fractures in resource recovery from unconventional reservoirs. This work presents a comparative study of microfluidic devices developed using two different techniques: photolithography/wet-etching/thermal-bonding versus Selective Laser-induced Etching. Both techniques result in devices that are chemically and physically resistant and tolerant of high pressure and temperature conditions that correspond to subsurface systems of interest. Both techniques provide pathways to high-precision etched microchannels and capable lab-on-chip devices. Photolithography/wet-etching, however, enables fabrication of complex channel networks with complex geometries, which would be a challenging task for laser etching techniques. This work summarizes a step-by-step photolithography, wet-etching and glass thermal-bonding protocol and, presents representative observations of foam transport with relevance to oil recovery from unconventional tight and shale formations. Finally, this work describes the use of a high-resolution monochromatic sensor to observe scCO2 foam behavior where the entirety of the permeable medium is observed simultaneously while preserving the resolution needed to resolve features as small as 10 µm.
Hydraulic fracturing has been used for quite some time as a means to stimulate flow especially in tight formations1. Large amounts of water needed in hydraulic fracturing are compounded with environmental factors, water-availability issues2, formation damage3, cost4 and seismic effects5. As a result, interest in alternate fracturing methods such as waterless fracturing and the use of foams is on the rise. Alternative methods may provide important benefits such as reduction in water use6, compatibility with water sensitive form....
CAUTION: This protocol involves handling a high-pressure setup, a high-temperature furnace, hazardous chemicals, and UV light. Please read all relevant material safety data sheets carefully and follow chemical safety guidelines. Review pressure testing (hydrostatic and pneumatic) safety guidelines including required training, safe operation of all equipment, associated hazards, emergency contacts, etc. before starting the injection process.
1. Design geometrical patterns
This section presents examples of physical observations from scCO2 foam flow through a main fracture connected to array of micro-cracks. A glass microfluidic device made via photolithography or SLE is placed inside a holder and in the field of view of a camera featuring a 60 megapixel, monochromatic, full-frame sensor. Figure 11 illustrates the process of fabrication microfluidic devices and their placement in the experimental setup. Figure 12 is illu.......
This work presents a protocol related to a fabrication platform to create robust, high-pressure glass microfluidic devices. The protocol presented in this work alleviates the need for a cleanroom by performing several of the final fabrication steps inside a glovebox. The use of a cleanroom, if available, is recommended to minimize the potential for contamination. Additionally, the choice of the etchant should be based on the desired surface roughness. The use of a mixture of HF and HCl as the etchant tends to reduce surf.......
The authors from the University of Wyoming gratefully acknowledge support as part of the Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under DOE (BES) Award DE-SC0019165. The authors from the University of Kansas would like to acknowledge the National Science Foundation EPSCoR Research Infrastructure Improvement Program: Track -2 Focused EPSCoR Collaboration award (OIA- 1632892) for funding of this project. Authors also extend their appreciation to Jindi Sun from the Chemical Engineering Department, ....
Name | Company | Catalog Number | Comments |
1/4” bolts and nuts | For fabrication of the metallic plates to sandwich the glass chip between them for thermal bonding | ||
3.45 x 3.45 mm UV LED | Kingbright | To emitt LED light | |
3D measuring Laser microscope | OLYMPUS | LEXT OLS4000 | To measure channel depths |
40 mm x 40 mm x 10 mm 12V DC Cooling Fan | Uxcell | To cool the UV LED lights | |
120 mm x 38 mm 24V DC Cooling Fan | Uxcell | To cool the UV LED lights | |
5 ml (6 ml) NORM-JECT Syringe | HENKE SASS WOLF | Lot #16M14CB | To rinse the chip before each experiment |
Acetone (Certified ACS) | Fisher Chemical | Lot #177121 | For cleaning |
Acid/ corossion resistive tweezer | TED PELLA | To handle the glass piece in corosive solutions | |
Acid/solvent resistance tweezers | TED PELLA, INC | #53009 and #53010 | To handle the glass in corrosive solutions |
Alloy X | AMERICAN SPECIAL METALS | Heat Number: ZZ7571XG11 | |
Ammonium hydroxide (ACS reagent) | Sigma Aldrich | Lot #SHBG9007V | To clean the chip at the end of process |
AutoCAD | Autodesk, San Rafael, CA | To design 2D patterns and 3D chips | |
BD Etchant for PSG-SiO2 systems | TRANSENE | Lot #028934 | An improved buffered etch formulation for delineation of phosphosilica glass – SiO2 (PSG), and borosilica glass – SiO2 (BSG) systems |
Blank Borofloat substrate | TELIC | CG-HF | Upper substrate for UV etching |
Borofloat substrate with metalizations | TELIC | PG-HF-LRC-Az1500 | Lower substrate for UV etching |
Capture One photo editing software | Phase One | To Capture/Edit/Convert the pictures taken by Phase One Camera | |
Capture station | DT Scientific | DT Versa | To place of the chip in the field of view of the camera |
Carbon dioxide gas (Grade E) | PRAXAIR | UN 1013, CAS Number 124-38-9 | non-aqeous portion of foam |
Chromium etchant 1020 | TRANSENE | Lot #025433 | High-purity ceric ammonium nitrate systems for precise, clean etching of chromium and chromium oxide films. |
Circulating baths with digital temperature controller | PolyScience | To control the brine and CO2 temperatures | |
CO2 | Airgas | 100% pure - 001013 - CAS: 124-38-9 | For CO2/scCO2 injection |
Computer | NVIDIA Tesla K20 Graphic Card - 706 MHz Core - 5 GB GDDR5 SDRAM - PCI Express 2.0 x16 | To process and visualize the images obtained via the Phase One camera | |
Custom made high pressure glass chip holder | To tightly hold the chip and its connections for high pressure testing | ||
Cutrain (Custom) | To protect against UV/IR Radiations | ||
Deionized water (DI) | For cleaning | ||
Digital camera with monochromatic 60 MP sensor | Phase One | IQ260 | Visualization system |
Ethanol, Anhydrous, USP Specs | DECON LABORATORIES, INC. | Lot #A12291505J, CAS# 64-17-5 | For cleaning |
Facepiece reusable respirator | 3M | 6502QL, Gases, Vapors, Dust, Medium | To protect against volatile solution inhalation |
Fused Silica (UV Grade) wafer | SIEGERT WAFER | UV grade | Glass precursor for SLE printing |
GIMP | Open-source image processing software | To characterize image texture and properties | |
Glovebox (vinyl anaerobic chamber) | Coy | To provide a clean, dust-free environment | |
Heated ultrasonic cleaning bath | Fisher Scientific | To accelerate the etching process | |
Hexamethyldisilazane (HMDS) Cleanroom® MB | KMG | 62115 | Primer for photoresist coating |
Hose (PEEK tubing) | IDEX HEALTH & SCIENCE | Natural 1/16" OD x .010" ID x 5ft, Part # 1531 | Flow connections |
Hydrochloric acid, certified ACS plus | Fisher Chemical | Lot # 187244 | Solvent in RCA semiconductor cleaning protocol |
Hydrogen Peroxide | Fisher Chemical | H325-500 | Solvent in RCA semiconductor cleaning protocol |
ImageJ | NIH | To characterize image texture and properties | |
ISCO syringe pump | TELEDYNE ISCO | D-SERIES (100DM, 500D) | To pump the fluids |
Kaiser LED light box | Kaiser | To illuminate the chip | |
Laser printing machine | LightFab GmbH, Germany. | FILL | Glass-SLE chip fabrication |
Laser safety glasses | FreeMascot | B07PPZHNX4 | To protect against UV/IR Radiations |
LED Engin 5W UV Lens | LEDiL | To emitt LED light | |
Light Fab 3D Printer (femtosecond laser) | Light Fab | To selectively laser Etch of fused silica | |
LightFab 3D printer | LightFab GmbH, Germany | To SLE print the fused silica chips | |
MATLAB | MathWorks, Inc., Natick, MA | To characterize image texture and properties | |
Metallic plates | |||
Micro abrasive sand blasters (Problast 2) | VANIMAN | Problast 2 – 80007 | To craete holes in cover plates |
MICROPOSIT 351 developer | Dow | 10016652 | Photoresist developer solution |
Muffle furnace | Thermo Scientific | Thermolyne Type 1500 | Thermal bonding |
N2 pure research grade | Airgas | Research Plus - NI RP300 | For drying the chips in each step |
NMP semiconductor grade - 0.1μm Filtered | Ultra Pure Solutions, Inc | Lot #02191502T | Organic solvent |
Oven | Gravity Convection Oven | 18EG | |
Phase One IQ260 with an achromatic sensor | Phase One | IQ260 | To visulize transport in microfluidic devices using an ISO 200 setting and an aperture at f/8. |
Photomask | Fine Line Imaging | 20,320 DPI FILM | Pattern of channels |
Photoresist (SU-8) | MICRO CHEM | Product item: Y0201004000L1PE, Lot Number: 18110975 | Photoresist |
Polarized light microscope | OLYMPUS | BX51 | Visual examination of micro channels |
Ports (NanoPort Assembly) | IDEX HEALTH & SCIENCE | NanoPort Assembly Headless, 10-32 Coned, for 1/16" OD, Part # N-333 | Connections to the chip |
Python | Python Software Foundation | To characterize image texture and properties | |
Safety face shield | Sellstrom | S32251 | To protect against UV/IR Radiations |
Sealing film (Parafilm) | Bemis Company, Inc | Isolation of containers | |
Shutter Control Software | Schneider-Kreuznach | To adjust shutter settings | |
Smooth ceramic plates | |||
Stirring hot plate | Corning® | PC-620D | To heat the solutions |
Sulfuric acid, ACS reagent 95.0-98.0% | Sigma Aldrich | Lot # SHBK0108 | Solvent in RCA semiconductor cleaning protocol |
Syringe pump (Standard Infuse/Withdraw PHD ULTRA) | Harvard Apparatus | 70-3006 | To saturate the chip before each experiment |
Torque wrench | Snap-on | TE25A-34190 | To tighten the screws |
UV power meter | Optical Associates, Incorporated | Model 308 | To measure the intesity of UV light |
UV power meter | Optical Associates, Incorporated | Model 308 | To quantify the strength of UV light |
UV radiation stand (LED lights) | To transfer the pattern to glass (photoresist layer) | ||
Vaccum pump | WELCH VACCUM TECHNOLOGY, INC | 1380 | To dry the chip |
Variable DC power supplies | Eventek | KPS305D | To power the UV LED lights |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved