A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Cet article décrit un protocole ainsi qu’une étude comparative de deux techniques de fabrication microfluidiques, à savoir la photolithographie/gravure humide/liaison thermique et l’gravure sélective induite par laser (SLE), qui conviennent aux conditions de haute pression. Ces techniques constituent des plates-formes habilitantes pour l’observation directe du flux de fluides dans les supports perméables de substitution et les systèmes fracturés dans des conditions de réservoir.

Abstract

Les limitations de pression de nombreuses plates-formes microfluidiques ont été un défi important dans les études expérimentales microfluidiques sur les médias fracturés. En conséquence, ces plates-formes n’ont pas été pleinement exploitées pour l’observation directe du transport à haute pression dans les fractures. Ces travaux introduisent des plates-formes microfluidiques qui permettent l’observation directe du flux multiphase dans les dispositifs dotés de supports perméables de substitution et de systèmes fracturés. Ces plates-formes offrent une voie pour répondre à des questions importantes et opportunes telles que celles liées à la capture, à l’utilisation et au stockage du CO2. Ce travail fournit une description détaillée des techniques de fabrication et une configuration expérimentale qui peut servir à analyser le comportement de la mousse supercritique de CO2 (scCO2),sa structure et sa stabilité. Ces études fournissent des informations importantes sur les processus améliorés de récupération du pétrole et le rôle des fractures hydrauliques dans la récupération des ressources à partir de réservoirs non conventionnels. Ce travail présente une étude comparative des dispositifs microfluidiques développés à l’aide de deux techniques différentes : photolithographie/gravure humide/liaison thermique versus gravure sélective induite par laser. Ces deux techniques aboutit à des dispositifs chimiquement et physiquement résistants et tolérants aux conditions de haute pression et de température qui correspondent aux systèmes souterrains d’intérêt. Ces deux techniques permettent d’obtenir des microcanaux gravés de haute précision et des dispositifs de laboratoire sur puce capables. La photolithographie/gravure humide permet toutefois la fabrication de réseaux de canaux complexes à géométrie complexe, ce qui serait une tâche difficile pour les techniques de gravure au laser. Ces travaux résument une photolithographie étape par étape, une gravure humide et un protocole de collage thermique du verre et présentent des observations représentatives du transport de mousse pertinentes pour la récupération du pétrole à partir de formations non conventionnelles de schistes serrés et non conventionnels. Enfin, ces travaux décrivent l’utilisation d’un capteur monochrome haute résolution pour observer le comportement de mousse scCO2 où l’ensemble du milieu perméable est observé simultanément tout en préservant la résolution nécessaire pour résoudre des caractéristiques aussi petites que 10 μm.

Introduction

La fracturation hydraulique est utilisée depuis un certain temps comme moyen de stimuler l’écoulement, en particulier dans les formations serrées1. De grandes quantités d’eau nécessaires à la fracturation hydraulique sont aggravées par des facteurs environnementaux, des problèmes de disponibilitéde l’eau 2,des dommages à la formation3,un coût 4 et des effetssismiques 5. Par conséquent, l’intérêt pour d’autres méthodes de fracturation comme la fracturation sans eau et l’utilisation de mousses est à la hausse. Les méthodes alternatives peuvent fournir ....

Protocol

MISE EN GARDE : Ce protocole consiste à manipuler une installation à haute pression, un four à haute température, des produits chimiques dangereux et de la lumière UV. Veuillez lire attentivement toutes les fiches de données pertinentes sur la sécurité des matériaux et suivre attentivement les directives sur la sécurité chimique. Examiner les lignes directrices sur la sécurité des essais de pression (hydrostatiques et pneumatiques), y compris la formation requise, le fonctionnement sécuritaire de tout l’équipement, les dangers connexes, les contacts d’urgence, etc. avant de commencer le processus d’injection.

1. Concevoir des motifs géométriq....

Representative Results

Cette section présente des exemples d’observations physiques provenant du flux de mousse scCO2 à travers une fracture principale reliée à un réseau de micro-fissures. Un dispositif microfluidique en verre fabriqué par photolithographie ou SLE est placé à l’intérieur d’un support et dans le champ de vision d’un appareil photo doté d’un capteur de 60 mégapixels, monochromes et plein cadre. La figure 11 illustre le processus de fabrication des dispositifs microfl.......

Discussion

Ce travail présente un protocole lié à une plate-forme de fabrication pour créer des dispositifs microfluidiques en verre robustes et à haute pression. Le protocole présenté dans ce travail soulage le besoin d’une salle blanche en effectuant plusieurs des dernières étapes de fabrication à l’intérieur d’une boîte à gants. L’utilisation d’une salle blanche, si disponible, est recommandée pour minimiser le risque de contamination. En outre, le choix de l’etchant doit être basé sur la rugosité de.......

Disclosures

Les auteurs ne déclarent aucun conflit d’intérêts et divulgation.

Acknowledgements

Les auteurs de l’Université du Wyoming reconnaissent avec gratitude leur soutien dans le cadre du Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations (CMC-UF), un energy frontier research center financé par le U.S. Department of Energy, Office of Science under DOE (BES) Award DE-SC0019165. Les auteurs de l’Université du Kansas aimeraient remercier la National Science Foundation EPSCoR Research Infrastructure Improvement Program: Track -2 Focused EPSCoR Collaboration award (OIA- 1632892) pour le financement de ce projet. Les auteurs remercient également Jindi Sun du Département de génie chimique de l’Universi....

Materials

NameCompanyCatalog NumberComments
1/4” bolts and nutsFor fabrication of the metallic plates to sandwich the glass chip between them for thermal bonding
3.45 x 3.45 mm UV LEDKingbrightTo emitt LED light
3D measuring Laser microscopeOLYMPUSLEXT OLS4000To measure channel depths
40 mm x 40 mm x 10 mm 12V DC Cooling FanUxcellTo cool the UV LED lights
120 mm x 38 mm 24V DC Cooling FanUxcellTo cool the UV LED lights
5 ml (6 ml) NORM-JECT SyringeHENKE SASS WOLFLot #16M14CBTo rinse the chip before each experiment
Acetone (Certified ACS)Fisher ChemicalLot #177121For cleaning
Acid/ corossion resistive tweezerTED PELLATo handle the glass piece in corosive solutions
Acid/solvent resistance tweezersTED PELLA, INC#53009 and #53010To handle the glass in corrosive solutions
Alloy XAMERICAN SPECIAL METALSHeat Number: ZZ7571XG11
Ammonium hydroxide (ACS reagent)Sigma AldrichLot #SHBG9007VTo clean the chip at the end of process
AutoCADAutodesk, San Rafael, CATo design 2D patterns and 3D chips
BD Etchant for PSG-SiO2 systemsTRANSENELot #028934An improved buffered etch formulation for delineation of phosphosilica glass – SiO2 (PSG), and borosilica glass – SiO2 (BSG) systems
Blank Borofloat substrateTELICCG-HFUpper substrate for UV etching
Borofloat substrate with metalizationsTELICPG-HF-LRC-Az1500Lower substrate for UV etching
Capture One photo editing softwarePhase OneTo Capture/Edit/Convert the pictures taken by Phase One Camera
Capture stationDT ScientificDT VersaTo place of the chip in the field of view of the camera
Carbon dioxide gas (Grade E)PRAXAIRUN 1013, CAS Number 124-38-9non-aqeous portion of foam
Chromium etchant 1020TRANSENELot #025433High-purity ceric ammonium nitrate systems for precise, clean etching of chromium and chromium oxide films.
Circulating baths with digital temperature controllerPolyScienceTo control the brine and CO2 temperatures
CO2Airgas100% pure - 001013 - CAS: 124-38-9For CO2/scCO2 injection
ComputerNVIDIA Tesla K20 Graphic Card - 706 MHz Core - 5 GB GDDR5 SDRAM - PCI Express 2.0 x16To process and visualize the images obtained via the Phase One camera
Custom made high pressure glass chip holderTo tightly hold the chip and its connections for high pressure testing
Cutrain (Custom)To protect against UV/IR Radiations
Deionized water (DI)For cleaning
Digital camera with monochromatic 60 MP sensorPhase OneIQ260Visualization system
Ethanol, Anhydrous, USP SpecsDECON LABORATORIES, INC.Lot #A12291505J, CAS# 64-17-5For cleaning
Facepiece reusable respirator3M6502QL, Gases, Vapors, Dust, MediumTo protect against volatile solution inhalation
Fused Silica (UV Grade) waferSIEGERT WAFERUV gradeGlass precursor for SLE printing
GIMPOpen-source image processing softwareTo characterize image texture and properties
Glovebox (vinyl anaerobic chamber)CoyTo provide a clean, dust-free environment
Heated ultrasonic cleaning bathFisher ScientificTo accelerate the etching process
Hexamethyldisilazane (HMDS) Cleanroom® MBKMG62115Primer for photoresist coating
Hose (PEEK tubing)IDEX HEALTH & SCIENCENatural 1/16" OD x .010" ID x 5ft, Part # 1531Flow connections
Hydrochloric acid, certified ACS plusFisher ChemicalLot # 187244Solvent in RCA semiconductor cleaning protocol
Hydrogen PeroxideFisher ChemicalH325-500Solvent in RCA semiconductor cleaning protocol
ImageJNIHTo characterize image texture and properties
ISCO syringe pumpTELEDYNE ISCOD-SERIES (100DM, 500D)To pump the fluids
Kaiser LED light boxKaiserTo illuminate the chip
Laser printing machineLightFab GmbH, Germany.FILLGlass-SLE chip fabrication
Laser safety glassesFreeMascotB07PPZHNX4To protect against UV/IR Radiations
LED Engin 5W UV LensLEDiLTo emitt LED light
Light Fab 3D Printer (femtosecond laser)Light FabTo selectively laser Etch of fused silica
LightFab 3D printerLightFab GmbH, GermanyTo SLE print the fused silica chips
MATLABMathWorks, Inc., Natick, MATo characterize image texture and properties
Metallic plates
Micro abrasive sand blasters (Problast 2)VANIMANProblast 2 – 80007To craete holes in cover plates
MICROPOSIT 351 developerDow10016652Photoresist developer solution
Muffle furnaceThermo ScientificThermolyne Type 1500Thermal bonding
N2 pure research gradeAirgasResearch Plus - NI RP300For drying the chips in each step
NMP semiconductor grade - 0.1μm FilteredUltra Pure Solutions, IncLot #02191502TOrganic solvent
OvenGravity Convection Oven18EG
Phase One IQ260 with an achromatic sensorPhase OneIQ260To visulize transport in microfluidic devices using an ISO 200 setting and an aperture at f/8.
PhotomaskFine Line Imaging20,320 DPI FILMPattern of channels
Photoresist (SU-8)MICRO CHEMProduct item: Y0201004000L1PE, Lot Number: 18110975Photoresist
Polarized light microscopeOLYMPUSBX51Visual examination of micro channels
Ports (NanoPort Assembly)IDEX HEALTH & SCIENCENanoPort Assembly Headless, 10-32 Coned, for 1/16" OD, Part # N-333Connections to the chip
PythonPython Software FoundationTo characterize image texture and properties
Safety face shieldSellstromS32251To protect against UV/IR Radiations
Sealing film (Parafilm)Bemis Company, IncIsolation of containers
Shutter Control SoftwareSchneider-KreuznachTo adjust shutter settings
Smooth ceramic plates
Stirring hot plateCorning®PC-620DTo heat the solutions
Sulfuric acid, ACS reagent 95.0-98.0%Sigma AldrichLot # SHBK0108Solvent in RCA semiconductor cleaning protocol
Syringe pump (Standard Infuse/Withdraw PHD ULTRA)Harvard Apparatus70-3006To saturate the chip before each experiment
Torque wrenchSnap-onTE25A-34190To tighten the screws
UV power meterOptical Associates, IncorporatedModel 308To measure the intesity of UV light
UV power meterOptical Associates, IncorporatedModel 308To quantify the strength of UV light
UV radiation stand (LED lights)To transfer the pattern to glass (photoresist layer)
Vaccum pumpWELCH VACCUM TECHNOLOGY, INC1380To dry the chip
Variable DC power suppliesEventekKPS305DTo power the UV LED lights

References

  1. Hyman, J. D., et al. Understanding hydraulic fracturing: a multi-scale problem. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences A. 13 (374), 1-15 (2016).
  2. Middleton, R. S., et al.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Ing nierienum ro 161mousse scCO2r servoirs fractur sr servoirs non conventionnelsschistesmicrofluidiquesphotolithographiegravure humidecollage thermiquegravure s lective induite par laser

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved