JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Medicine

In Vitro and In Vivo Delivery of Magnetic Nanoparticle Hyperthermia Using a Custom-Built Delivery System

Published: July 2nd, 2020

DOI:

10.3791/61413

1Thayer School of Engineering, Dartmouth College, 2Geisel School of Medicine, Dartmouth College

Abstract

Hyperthermia has long been used in the treatment of cancer. Techniques have varied from the intra-tumoral insertion of hot iron rods, to systemically delivered tumor antibody-targeted magnetic nanoparticles, at temperatures from 39 ˚C (fever-level) to 1,000 ˚C (electrocautery) and treatment times from seconds to hours. The temperature-time relationship (thermal dose) dictates the effect with high thermal doses resulting in the tissue ablation and lower thermal doses resulting in sublethal effects such as increased blood flow, accumulation of drugs and immune stimulation. One of the most promising current medical therapies is magnetic nanoparticle hyperthermia  (mNPH). This technique involves activating magnetic nanoparticles, that can be delivered systemically or intratumorally, with a non-invasive, non-toxic alternating magnetic field. The size, construct and association of the magnetic nanoparticles and the frequency and field strength of the magnetic field are major heating determinants. We have developed sophisticated instrumentation and techniques for delivering reproducible magnetic nanoparticle hyperthermia in large and small animal models and cultured cells. This approach, using continuous, real time temperature monitoring in multiple locations, allows for the delivery of well-defined thermal doses to the target tissue (tumor) or cells while limiting non-target tissue heating. Precise control and monitoring of temperature, in multiple sites, and use of the industry standard algorithm (cumulative equivalent minutes at 43 ˚C /CEM43), allows for an accurate determination and quantification of thermal dose. Our system, which allows for a wide variety of temperatures, thermal doses, and biological effects, was developed through a combination of commercial acquisitions and inhouse engineering and biology developments. This system has been optimized in a manner that allows for the rapid conversion between ex vivo, in vitro, and in vivo techniques. The goal of this protocol is to demonstrate how to design, develop and implement an effective technique and system for delivering reproducible and accurate magnetic nanoparticle therapy (mNP) hyperthermia.

Explore More Videos

Keywords Magnetic Nanoparticles

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved