JoVE Logo

Sign In

Abstract

Neuroscience

Quantifying Spontaneous Ca2+ Fluxes and their Downstream Effects in Primary Mouse Midbrain Neurons

Published: September 9th, 2020

DOI:

10.3791/61481

1Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, 2Texas A&M Institute for Neuroscience

Abstract

Parkinson’s disease (PD) is a devastating neurodegenerative disorder caused by the degeneration of dopaminergic (DA) neurons. Excessive Ca2+ influx due to the abnormal activation of glutamate receptors results in DA excitotoxicity and has been identified as an important mechanism for DA neuron loss. In this study, we isolate, dissociate, and culture midbrain neurons from the mouse ventral mesencephalon (VM) of ED14 mouse embryos. We then infect the long-term primary mouse midbrain cultures with an adeno-associated virus (AAV) expressing a genetically encoded calcium indicator, GCaMP6f under control of the human neuron-specific synapsin promoter, hSyn. Using live confocal imaging, we show that cultured mouse midbrain neurons display spontaneous Ca2+ fluxes detected by AAV-hSyn-GCaMP6f. Bath application of glutamate to midbrain cultures causes abnormal elevations in intracellular Ca2+ within neurons and this is accompanied by caspase-3 activation in DA neurons, as demonstrated by immunostaining. The techniques to identify glutamate-mediated apoptosis in primary mouse DA neurons have important applications for the high content screening of drugs that preserve DA neuron health.

Explore More Videos

Keywords Calcium Fluxes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved