A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Reported here is a system for calcium imaging in freely behaving Caenorhabditis elegans with well-controlled, nonlocalized vibration. This system allows researchers to evoke nonlocalized vibrations with well-controlled properties at nano-scale displacement and to quantify calcium currents during responses of C. elegans to the vibrations.
Nonlocalized mechanical forces, such as vibrations and acoustic waves, influence a wide variety of biological processes from development to homeostasis. Animals cope with these stimuli by modifying their behavior. Understanding the mechanisms underlying such behavioral modification requires quantification of neural activity during the behavior of interest. Here, we report a method for calcium imaging in freely behaving Caenorhabditis elegans with nonlocalized vibration of specific frequency, displacement, and duration. This method allows the production of well-controlled, nonlocalized vibration using an acoustic transducer and quantification of evoked calcium responses at single-cell resolution. As a proof of principle, the calcium response of a single interneuron, AVA, during the escape response of C. elegans to vibration is demonstrated. This system will facilitate understanding of neural mechanisms underlying behavioral responses to mechanical stimuli.
Animals are often exposed to nonlocalized mechanical stimuli such as vibrations or acoustic waves1,2. Because these stimuli influence homeostasis, development, and reproduction, animals must modify their behaviors to cope with them3,4,5. However, the neural circuits and mechanisms underlying such behavioral modification are poorly understood.
Mechanosensory behavior in the nematode, Caenorhabditis elegans, is a simple behavioral paradigm, in which worms usually change behavior from....
1. Cultivation of worms until calcium imaging
Here, a worm expressing both GCaMP and TagRFP under control of the AVA interneuron-specific promoter is used as an example of calcium imaging in freely behaving C. elegans. GCaMP and TagRFP channel data were obtained as a series of images, some of which are shown in Figure 6 and as a movie (Supplemental Movie 1). The displacement of the Petri plate induced by our nonlocalized vibration system (Figure 7) was also quantified. The displace.......
Generally, the quantification of neural activity requires introduction of a probe and/or restraints on animal body movement. However, for studies of mechanosensory behavior, the invasive introduction of a probe and restraints themselves constitute mechanical stimuli. C. elegans provides a system to circumvent these problems, because its features are transparent and because it has a simple, compact neural circuit comprising only 302 neurons. Combining these advantages with the previously developed method of evoki.......
We thank the Caenorhabditis Genetics Center for providing the strains used in this study. This publication was supported by JSPS KAKENHI Grant-in-Aid for Scientific research (B) (Grant no. JP18H02483), on Innovative areas "Science of Soft Robot" project (Grant no. JP18H05474), the PRIME from Japan Agency for Medical Research and Development (grant number 19gm6110022h001), and the Shimadzu foundation.
....Name | Company | Catalog Number | Comments |
Data anaylsis software | |||
DualViewImaging.nb | author | For analysis of acquired data | |
Mathematica12 | Wolfram | For running data anaysis software DualViewImaging | |
Escherichia coli and C. elegans strains | |||
E. coli OP50 | Caenorhabditis Genetics Center | OP50 | Food for C. elegans. Uracil auxotroph. E. coli B. |
lite-1(ce314) strain | Caenorhabditis Genetics Center | KG1180 | Light-insensitive mutant |
lite-1(ce314) strain expressing NLS-GCaMP-NLS and TagRFP under the control of the AVA-speciric promoter | author | ST12 | lite-1(ce314) mutant carrying the genes expressing NLS-GCaMP5G-NLS (NLS; nuclear localization signal) and TagRFP under the control of the flp-18 promoter as an extrachoromosomal arrays |
Laser Doppler vibrometer | |||
Lase Doppler vibrometer | Polytec Japan | IVS-500 | For quantifying frequency and displacement generated by the accoustic transducer |
Mouse macro system | |||
Assay.txt | Author | Script for temporally and specially controlling mouse cursol in Windows | |
HiMacroEx | Vector | https://www.vector.co.jp/download/file/winnt/util/fh667310.html | Free download software for controling mouse cursor based on a script |
Nematode growth media plate | |||
Agar purified, powder | Nakarai tesque | 01162-15 | For preparation of NGM plates |
Bacto pepton | Becton Dickinson | 211677 | For preparation of NGM plates |
Calcium chloride | Wako | 036-00485 | For preparation of NGM plates |
Cholesterol | Wako | 034-03002 | For preparation of NGM plates |
di-Photassium hydrogenphosphate | Nakarai tesque | 28727-95 | For preparation of NGM plates |
LB broth, Lennox | Nakarai tesque | 20066-95 | For culture of E. coli OP50 |
Magnesium sulfate anhydrous | TGI | M1890 | For preparation of NGM plates |
Potassium Dihydrogenphosphate | Nakarai tesque | 28720-65 | For preparation of NGM plates |
Sodium Chloride | Nakarai tesque | 31320-05 | For preparation of NGM plates |
Petri dishes (60 mm) | Nunc | 150270 | For preparation of NGM plates |
Nonlocalized vibration device | |||
Amplifier | LEPY | LP-A7USB | For stimulation with controllable vibration |
Acoustic transducer | MinebeaMitsumi | LVC25 | For stimulation with controllable vibration |
WaveGene Ver. 1.5 | Thrive | http://efu.jp.net/soft/wg/down_wg.html | Free download software for controling vibration property |
Noninvasive calcium imaging | |||
2-Channel benchtop 3-phase brushless DC servo controller | Thorlabs | BBD202 | Compatible controller for MLS203-1 stages |
479/585 nm BrightLine dual-band bandpass filter | Semrock | FF01-479/585-25 | For acquisition of two channel images (GCaMP and TagRFP) |
505/606 nm BrightLine dual-edge standard epi-fluorescence dichroic beamsplitter | Semrock | FF505/606-Di01-25x36 | For acquisition of two channel images (GCaMP and TagRFP) |
512/25 nm BrightLine single-band bandpass filter | Semrock | FF01-512/25-25 | For acquisition of two channel images (GCaMP and TagRFP) |
630/92 nm BrightLine single-band bandpass filter | Semrock | FF01-630/92-25 | For acquisition of two channel images (GCaMP and TagRFP) |
Computer | Dell | Precision T7600 | Windows7 with Intel Xeon CPU ES-2630 and 8 GB of RAM |
High-speed x-y motorized stage | Thorlabs | MLS203-1 | Fast XY scannning stage |
Image splitting optics | Hamamatsu photonics | A12801-01 | For acquisition of two channel images (GCaMP and TagRFP) generated by W-VIEW GEMINI Image spliting optics |
LED light source | CoolLED | pE-4000 | For generating 470 nm and 560 nm excitation light |
Microscope | Olympus | MVX10 | |
sCMOS camera | Andor | Zyla | |
x 2 Objective lens | Olympus | MVPLAPO2XC | Working distance 20 mm and numerical aperture 0.5 |
Plasmid | |||
pKDK66 plasmid | author | pKDK66 | Co-injection marker |
pTAK83 plasmid | author | pTAK83 | Plasmid for expression of TagRFP under the control of the flp-18 promoter |
pTAK144 plasmid | author | pTAK144 | Plasmid for expression of NLS-GCaMP5G-NLS under the control of the flp-18 promoter |
Tracking software | |||
homingback.vi | author | SubVi file for tracking a fluoresent spot of a worm through feedback control of sCMOS camera and x-y motorized stage | |
LabVIEW | National instruments | For running tracking software | |
Zyla Control ver.2.6CI.vi | author | For tracking a fluoresent spot of a worm through feedback control of sCMOS camera and x-y motorized stage |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved