JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Behavior

Calcium Imaging in Freely Behaving Caenorhabditis elegans with Well-Controlled, Nonlocalized Vibration

Published: April 29th, 2021

DOI:

10.3791/61626

1Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 2Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, 3National Institute for Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, 4JST, PRESTO

* These authors contributed equally

Abstract

Nonlocalized mechanical forces, such as vibrations and acoustic waves, influence a wide variety of biological processes from development to homeostasis. Animals cope with these stimuli by modifying their behavior. Understanding the mechanisms underlying such behavioral modification requires quantification of neural activity during the behavior of interest. Here, we report a method for calcium imaging in freely behaving Caenorhabditis elegans with nonlocalized vibration of specific frequency, displacement, and duration. This method allows the production of well-controlled, nonlocalized vibration using an acoustic transducer and quantification of evoked calcium responses at single-cell resolution. As a proof of principle, the calcium response of a single interneuron, AVA, during the escape response of C. elegans to vibration is demonstrated. This system will facilitate understanding of neural mechanisms underlying behavioral responses to mechanical stimuli.

Explore More Videos

Keywords Calcium Imaging

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved