JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Cepa controlada de hidrogeles 3D bajo imágenes de microscopía en vivo

Published: December 4th, 2020

DOI:

10.3791/61671

1Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, 2Department of Materials Science and Engineering, Faculty of Engineering, Tel-Aviv University, 3School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 4Center for the Physics and Chemistry of Living Systems, Tel-Aviv University

El método presentado implica el estiramiento uniaxial de hidrogeles blandos 3D incrustados en caucho de silicona mientras permite la microscopía confocal viva. Se demuestra la caracterización de las cepas de hidrogel externas e internas, así como la alineación de la fibra. El dispositivo y el protocolo desarrollados pueden evaluar la respuesta de las células a diversos regímenes de deformación.

Las fuerzas externas son un factor importante en la formación, el desarrollo y el mantenimiento de los tejidos. Los efectos de estas fuerzas se estudian a menudo utilizando métodos de estiramiento in vitro especializados. Varios sistemas disponibles utilizan camillas basadas en sustrato 2D, mientras que la accesibilidad de las técnicas 3D para tensar hidrogeles blandos, es más restringida. Aquí, describimos un método que permite el estiramiento externo de hidrogeles blandos de su circunferencia, utilizando una tira de silicona elástica como el portador de la muestra. El sistema de estiramiento utilizado en este protocolo está construido a partir de piezas impresas en 3D y electrónica de bajo costo, por lo que es simple y fácil de replicar en otros laboratorios. El proceso experimental comienza con hidrogeles de fibrina blanda polimerización (>100 μm) (módulo elástico de ~ 100 Pa) en un recorte en el centro de una tira de silicona. Las construcciones de gel de silicona se unen al dispositivo de estiramiento impreso y se colocan en la etapa de microscopio confocal. Bajo microscopía en vivo, se activa el dispositivo de estiramiento, y los geles se muestran en varias magnitudes de estiramiento. El procesamiento de imágenes se utiliza para cuantificar las deformaciones de gel resultantes, demostrando cepas relativamente homogéneas y alineación de fibras a lo largo del espesor 3D del gel (ejeZ). Las ventajas de este método incluyen la capacidad de colar hidrogeles extremadamente blandos en 3D mientras se ejecuta microscopía in situ, y la libertad de manipular la geometría y el tamaño de la muestra de acuerdo con las necesidades del usuario. Además, con la adaptación adecuada, este método se puede utilizar para estirar otros tipos de hidrogeles (por ejemplo, colágeno, poliacrilamida o polietilenglicol) y puede permitir el análisis de las células y la respuesta de los tejidos a las fuerzas externas en condiciones 3D más biomiméticas.

La respuesta tisular a las fuerzas mecánicas es una parte integral de una amplia gama de funciones biológicas, incluyendo la expresióngénica 1,la diferenciación celular2,y la remodelación tisular3. Por otra parte, los cambios inducidos por la fuerza en la matriz extracelular (ECM) tales como alineación y densificación de la fibra pueden afectar comportamiento de la célula y la formación del tejido4,5,6. La estructura de malla fibrosa del ECM tiene propiedades mecánicas intrigantes, como elasticidad no lin....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparación de la solución (que se realizará con antelación)

  1. Etiquetado de fibrinógeno
    NOTA: El paso de etiquetado es necesario sólo si se desea analizar la deformación del gel de fibrina. Para experimentos celulares, es posible usar un gel sin etiquetar.
    1. Añadir 38 μL de 10 mg/mL de colorante fluorescente de éster succinimidilo (disuelto en DMSO) a 1,5 mL de solución de fibrinógeno de 15 mg/mL (relación molar de 5:1) en un tubo de centrífuga de 50 mL y colocar en una coctelera durant.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Los datos representativos del estiramiento estático de magnitudes crecientes aplicado a la tira de silicona portadora de un hidrogel de fibrina 3D, embebido con perlas fluorescentes de 1 μm, se muestran en la Figura 9. El análisis demuestra el efecto del estiramiento de silicona en los cambios geométricos del recorte, así como las cepas desarrolladas dentro del gel. Lasimágenes de pila Z de todo el gel se utilizan para evaluar la deformación del recorte original en f.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

El método y el protocolo presentados aquí se basan en gran medida en nuestro estudio anterior de Roitblat Riba et al.41 Incluimos aquí el diseño completo asistido por computadora (CAD), Python y los códigos de microcontrolador del dispositivo SCyUS.

Las principales ventajas del método presentado sobre los enfoques existentes incluyen la posibilidad de colar hidrogeles 3D muy suaves (módulo elástico de ~ 100 Pa) desde su circunferencia, y bajo imágenes .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Algunas figuras incluidas aquí han sido adaptadas con permiso del Copyright Clearance Center: Springer Nature, Annals of Biomedical Engineering. Straining 3D hydrogels with uniform z-axis strains while enabling live microscopy imaging, A. Roitblat Riba, S. Natan, A. Kolel, H. Rushkin, O. Tchaicheeyan, A. Lesman, Copyright© (2019).

https://doi.org/10.1007/s10439-019-02426-7

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Alexa Fluor 546 carboxylic acid, succinimidyl esterInvitrogenA20002
Cell Medium (DMEM High Glucose)Biological Industries01-052-1AAdd 10% FBS, 1% PNS, 1% L-Glutamine, 1% Sodium Pyruvate
Cover Slip #1.5Bar-Naor Ltd.BN72204-3022×40 mm
DIMETHYL SULPHOXIDE 99.5% GC DMSOSigma-Aldrich Inc.D-5879-500 ML
Dulbecco's Phosphate-Buffered SalineBiological Industries02-023-1A
EVICEL Fibrin Sealant (Human)Omrix Biopharmaceuticals3902Fibrinogen: 70 mg/mL, Thrombin: 800-1200 IU/mL
Fibrinogen BufferN/ARecipe for 1L: 7g NaCl, 2.94g trisodium citrate dihydrate, 9g glycine, 20g arginine hydrochloride & 0.15g calcium chloride dihydrate. Bring final volume to 1L with PuW (pH 7.0-7.2)
Fluorescent micro-beads FluoSpheres (1 µm)InvitrogenF8820Orange (540/560)
Provided as suspension (2% solids) in water plus 2 mM sodium azide
High-Temperature Silicone RubberMcMaster-Carr3788T41580 µm-thick
E = 1.5 Mpa
Poisson Ratio = 0.48
Tensile Strength = 4.8 MPa
Upper limit of stretch = +300% engineering strain
HiTrap desalting column 5 mL (Sephadex G-25 packed)GE Healthcare17-1408-01
HIVAC-G High Vacuum Sealing CompoundShin-Etsu Chemical Co., Ltd.HIVAC-G 100
ImageJ FIJI software39National Institute of Health, Bethesda, MDVersion 1.8.0_112
Microcontroller (Adruino Uno + Adafruit Motorshield v2.3)Arduino/AdafruitArduino-DK001/Adafruit-1438
MicroVL 21R CentrifugeThermo Scientific75002470
ParafilmBemisPM-996
Primovert Light MicroscopeCarl Zeiss Suzhou Co., Ltd.491206-0011-000
SCyUS CAD (Solidworks)Dassault SystèmesN/A
SCyUS Code37N/AN/A
Servomotor - TowerPro SG-5010Adafruit155
SL 16R CentrifugeThermo Scientific75004030For 50 mL tubes
Sterile 10 cm non-culture platesCorning430167
Thrombin bufferN/ARecipe for 1L: 20g mannitol, 8.77g NaCl, 2.72g sodium acetate trihydrate, 24 mL 25% Human Serum Albumin, 5.88g calcium chloride. Bring final volume to 1L with PuW (pH 7.0)
Trypsin EDTA Solution B (0.25%), EDTA (0.05%)Biological Industries03-052-1B
USB Cable (Type B Male to Type A Male)N/AN/A
Zeiss LSM 880 Confocal MicroscopeCarl Zeiss AG2811000417
ZEN 2.3 SP1 FP3 (black)Carl Zeiss AGRelease Version 14.0.0.0

  1. Bleuel, J., Zaucke, V., Bruggemann, G. P., Niehoff, A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS ONE. 10, 0119816 (2015).
  2. Pennisi, C. P., Olesen, C. G., de Zee, M., Rasmussen, J., Zachar, V. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Engineering Part A. 17, 2543-2550 (2011).
  3. Grodzinsky, A. J., Levenston, M. E., Jin, M., Frank, E. H. Cartilage Tissue Remodeling in Response to Mechanical Forces. Annual Review of Biomedical Engineering. 2 (1), 691-713 (2000).
  4. Munster, S., et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proceedings of the National Academy of Sciences of the USA. 110, 12197-12202 (2013).
  5. Vader, D., Kabla, A., Weitz, D., Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE. 4, 5902 (2009).
  6. Badylak, S. F. The extracellular matrix as a scaffold for tissue reconstruction. Seminars in Cell & Developmental Biology. 13 (5), 377-383 (2002).
  7. Natan, S., Koren, Y., Shelah, O., Goren, S., Lesman, A. . Molecular Biology of the Cell. 31 (14), 1474-1485 (2020).
  8. Ban, E., et al. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical Journal. 114 (2), 450-461 (2018).
  9. Kim, J., et al. Stress-induced plasticity of dynamic collagen networks. Nature Communications. 8, 842 (2017).
  10. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., Janmey, P. A. Nonlinear elasticity in biological gels. Nature. 435, 191-194 (2005).
  11. Wen, Q., Basu, A., Janmey, P. A., Yodh, A. G. Non-affine deformations in polymer hydrogels. Soft Matter. 8, 8039-8049 (2012).
  12. Muiznieks, L. D., Keeley, F. W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochimica et Biophysica Acta. 1832, 866-875 (2012).
  13. Brown, A. E. X., Litvinov, R. I., Discher, D. E., Purohit, P. K., Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science. 325, 741-744 (2009).
  14. Carroll, S. F., Buckley, C. T., Kelly, D. J. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Frontiers in Bioengineering and Biotechnology. 5, 73 (2017).
  15. Livne, A., Bouchbinder, E., Geiger, B. Cell reorientation under cyclic stretching. Nature Communications. 5, 3938 (2014).
  16. Wang, L., et al. Patterning cellular alignment through stretching hydrogels with programmable strain gradients. ACS Applied Materials & Interfaces. 7, 15088-15097 (2015).
  17. Xu, G. K., Feng, X. Q., Gao, H. Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal. 114 (3), 701-710 (2017).
  18. Chagnon-Lessard, S., Jean-Ruel, H., Godin, M., Pelling, A. E. Cellular orientation is guided by strain gradients. Integrative Biology (United Kingdom). 9 (7), 607-618 (2013).
  19. Lu, J., et al. Cell orientation gradients on an inverse opal substrate. ACS Applied Materials & Interfaces. 7 (19), 10091-10095 (2015).
  20. Baker, B. M., Chen, C. S. Deconstructing the third dimension - 3D culture microenvironments alter cellular cues. Journal of Cell Science. 125, 3015-3024 (2012).
  21. Bono, N., et al. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnology and Bioengineering. 113, 2254-2263 (2016).
  22. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology. 8, 839-845 (2007).
  23. Riehl, B. D., Park, J. H., Kwon, I. K., Lim, J. Y. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Engineering Part B: Reviews. 18, 288-300 (2012).
  24. Flexcell. Linear Tissue Train Culture Plate. Flexcell. , (2019).
  25. Flexcell. Tissue Train. Flexcell. , (2019).
  26. CellScale. MCT6 Stretcher. CellScale. , (2019).
  27. STREX. STB-150. STREX. , (2019).
  28. STREX. Stretch Chambers. STREX. , (2019).
  29. Kamble, H., Barton, M. J., Jun, M., Park, S., Nguyen, N. T. Cell stretching devices as research tools: engineering and biological considerations. Lab on a Chip. 16, 3193-3203 (2016).
  30. Weidenhamer, N. K., Tranquillo, R. T. Influence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets. Tissue Engineering Part C: Methods. 19, 386-395 (2013).
  31. Yung, Y. C., Vandenburgh, H., Mooney, D. J. Cellular strain assessment tool (CSAT): precision-controlled cyclic uniaxial tensile loading. Journal of Biomechanics. 42, 178-182 (2009).
  32. Chen, K., et al. Role of boundary conditions in determining cell alignment in response to stretch. Proceedings of the National Academy of Sciences of the USA. 115, 986-991 (2018).
  33. Heher, P., et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia. 24, 251-265 (2015).
  34. Foolen, J., Deshpande, V. S., Kanters, F. M. W., Baaijens, F. P. T. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials. 33, 7508-7518 (2012).
  35. Walker, M., Godin, M., Pelling, A. E. A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomedical Microdevices. 20, 43 (2018).
  36. Zhao, R. G., Boudou, T., Wang, W. G., Chen, C. S., Reich, D. H. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Advanced Materials. 25, 1699-1705 (2013).
  37. Li, Y. H., et al. Magnetically actuated cell-laden micro-scale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Materials. 8, 238 (2016).
  38. Li, Y. H., et al. An approach to quantifying 3D responses of cells to extreme strain. Scientific Reports. 6, 19550 (2016).
  39. Humphrey, J. D., et al. A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomechanics and Modeling in Mechanobiology. 7, 323-334 (2008).
  40. Niklason, L. E., et al. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proceedings of the National Academy of Sciences of the USA. 107, 3335-3339 (2010).
  41. Roitblat Riba, A., et al. Straining 3D hydrogels with uniform z-axis strains while enabling live microscopy imaging. Annals of Biomedical Engineering. , (2019).
  42. Gomez, D., Natan, S., Shokef, Y., Lesman, A. Mechanical interaction between cells facilitates molecular transport. Advanced Biosystems. 3 (12), 1900192 (2019).
  43. Schindelin, J., et al. Fiji: an open- source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  44. EPFL Switzerland. OrientationJ plug in. EPFL Switzerland. , (2019).
  45. Goren, S., Koren, Y., Xu, X., Lesman, A. Elastic anisotropy governs the decay of cell-induced displacements. Biophysical Journal. 118 (5), 1152-1164 (2019).
  46. Notbohm, J., Lesman, A., Tirrell, D. A., Ravichandran, G. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integrative Biology. 7 (10), 1186-1195 (2015).
  47. Lesman, A., Notbohm, J., Tirrell, D. A., Ravichandran, G. Contractile forces regulate cell division in three-dimensional environments. Journal of Cell Biology. 205 (2), 155-162 (2014).
  48. Cha, C. Y., et al. Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue. Angewandte Chemie International Edition. 52, 6949-6952 (2019).
  49. Wirthl, D., et al. Instant tough bonding of hydrogels for soft machines and electronics. Science Advances. 3, (2017).
  50. Juarez-Moreno, J. A., Avila-Ortega, A., Oliva, A. I., Aviles, F., Cauich-Rodriguez, J. V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science. 349, 763-773 (2015).
  51. Kim, H. T., Jeong, O. C. PDMS surface modification using atmospheric pressure plasma. Microelectronic Engineering. 88, 2281-2285 (2011).
  52. Prasad, B. R., et al. Controlling cellular activity by manipulating silicone surface roughness. Colloids and Surfaces. 78, 237-242 (2010).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved