Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present development of a mock circulation setup for multimodal therapy evaluation, pre-interventional planning, and physician-training on cardiovascular anatomies. With the application of patient-specific tomographic scans, this setup is ideal for therapeutic approaches, training, and education in individualized medicine.

Abstract

Catheter-based interventions are standard treatment options for cardiovascular pathologies. Therefore, patient-specific models could help training physicians' wire-skills as well as improving planning of interventional procedures. The aim of this study was to develop a manufacturing process of patient-specific 3D-printed models for cardiovascular interventions.

To create a 3D-printed elastic phantom, different 3D-printing materials were compared to porcine biological tissues (i.e., aortic tissue) in terms of mechanical characteristics. A fitting material was selected based on comparative tensile tests and specific material thicknesses were defined. Anonymized contrast-enhanced CT-datasets were collected retrospectively. Patient-specific volumetric models were extracted from these datasets and subsequently 3D-printed. A pulsatile flow loop was constructed to simulate the intraluminal blood flow during interventions. Models' suitability for clinical imaging was assessed by x-ray imaging, CT, 4D-MRI and (Doppler) ultrasonography. Contrast medium was used to enhance visibility in x-ray-based imaging. Different catheterization techniques were applied to evaluate the 3D-printed phantoms in physicians' training as well as for pre-interventional therapy planning.

Printed models showed a high printing resolution (~30 µm) and mechanical properties of the chosen material were comparable to physiological biomechanics. Physical and digital models showed high anatomical accuracy when compared to the underlying radiological dataset. Printed models were suitable for ultrasonic imaging as well as standard x-rays. Doppler ultrasonography and 4D-MRI displayed flow patterns and landmark characteristics (i.e., turbulence, wall shear stress) matching native data. In a catheter-based laboratory setting, patient-specific phantoms were easy to catheterize. Therapy planning and training of interventional procedures on challenging anatomies (e.g., congenital heart disease (CHD)) was possible.

Flexible patient-specific cardiovascular phantoms were 3D-printed, and the application of common clinical imaging techniques was possible. This new process is ideal as a training tool for catheter-based (electrophysiological) interventions and can be used in patient-specific therapy planning.

Introduction

Individualized therapies are gaining increasing importance in modern clinical practice. Essentially, they can be classified in two groups: genetic and morphologic approaches. For individualized therapies based on unique personal DNA, either genome sequencing or the quantification of gene expression levels is necessary1. One can find these methods in oncology, for example, or in metabolic disorder treatment2. The unique morphology (i.e., anatomy) of each individual plays an important role in interventional, surgical, and prosthetic medicine. The development of individualized prostheses and pre-interventional/-operative th....

Protocol

Ethical approval was considered by the ethical committee of the Ludwig-Maximilians-Universität München and was waived given that the radiological datasets used in this study were retrospectively collected and fully anonymized.

Please refer to the institute's MRI safety guidelines, especially regarding the used LVAD ventricle and metal components of the flow loop.

1. Data acquisition

  1. Prior to creating the anatomical phantoms, select a s.......

Representative Results

The described representative results focus on a few cardiovascular structures commonly used in planning, training, or testing settings. These were created using isotropic CT-datasets with a ST of 1.0 mm and a voxel size of 1.0 mm³. The aortic aneurysm models' wall thickness was set at 2.5 mm complying with comparative tensile testing results of the printing material (tensile strength: 0.62 ± 0.01 N/mm2; Fmax: 1. 55 ± 0.02 N; elongation: 9.01 ±.......

Discussion

The presented workflow allows to establish individualized models and thereby perform pre-interventional therapy planning, as well as physician training on individualized anatomies. To achieve this, patient-specific tomographic data can be used for segmentation and 3D-printing of flexible cardiovascular phantoms. By implementation of these 3D-printed models in a mock circulation, different clinical situations can be realistically simulated.

Nowadays, many therapy planning procedures focus upon .......

Acknowledgements

This publication was supported by the German Heart Foundation/German Foundation of Heart Research.

....

Materials

NameCompanyCatalog NumberComments
3-maticMaterialise ABSoftware Version 15.0 - Commercial 3D-Modeling Software
Affiniti 50Philips Medical Systems GmbHUltrasonic Imaging System
Agilista W3200Keyence Co.Polyjet 3D-Printer with a spatial resolution of 30µm
AR-G1LKeyence Co.flexible 3D-Printing material
Artis ZeeSiemens Healthcare GmbHAngiographic X-ray Scanner
cvi42CCI Inc.Software Version 5.12 - 4D Flow Analysis Software
Diagnostic Catheter, Multipurpose MPA 2Cordis, A Cardinal Health companyCatheter for pediatric training models, Sizes 4F for infants and 5F for children, young adults
Excor Ventricular Assist DeviceBerlin Heart GmbH80 -100ml stroke volume
Imeron 400 Contrast AgentBracco ImagingCT - Contrast Agent
IntroGuide FAngiokard Medizintechnik GmbHGuidewire with J-tip; diameter: 0.035" length: 220cm
Lunderquist GuidewireCook Medical Inc.(T)EVAR interventional guidewire
MAGNETOM AeraSiemens Healthcare GmbHMRI Scanner
Magnevist Contrast AgentBayer Vital GmbHMRI - Contrast Agent
MimicsMaterialise ABSoftware Version 23.0 - Commercial Segmentation Software
Modeling StudioKeyence Co.3D-Printer Slicing Software
PVC tubing
Radifocus Guide Wire MTerumo Europe NVStraight guidewire; diameter: 0.035" length: 260cm
Really useful box 9LReally useful products Ltd.
Rotigarose - Standard AgarCarl Roth GmbH3810.4
SolidworksDassault Systemes SESoftware Version 2019-2020; CAD Design Software
SOMATOM ForceSiemens Healthcare GmbHComputed Tomography Scanner
syngo viaSiemens Healthcare GmbHRadiological Imaging Software

References

  1. Goetz, L. H., Schork, N. J. Personalized medicine: motivation, challenges, and progress. Fertility and Sterility. 109 (6), 952-963 (2018).
  2. Gwin, W. R., Disis, M. L., Ruiz-Garcia, E. Immuno-Oncology in the Era of Personalized Medicine.

Explore More Articles

3D PrintingCardiovascular PhantomsInterventional PlanningTrainingPatient specific ModelsRadiological DataHounsfield UnitsSegmentationSurface ModelingFlow Loop Integration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved