JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Cancer Research

Forecasting Hepatocellular Carcinoma Mortality using a Weighted Regression Model to Estimate Cohort Effects in Taiwan

Published: August 6th, 2021



1Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 2Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University
* These authors contributed equally

We depict a multistage method to measure a cohort effect with age data, thereby allowing data to be eliminated in many situations without sacrificing data quality. The protocol demonstrates the strategy and provides a weighted regression model for analyzing the hepatocellular carcinoma data.

To eliminate the influence of age and period in age cycle contingency table data, a multistage method was adopted to evaluate the cohort effect. The most general primary malignant tumor of the liver is hepatocellular carcinoma (HCC). HCC is associated with liver cirrhosis with alcohol and viral etiologies. In epidemiology, long-term trends in HCC mortality were delineated (or forecasted) by using an age-period-cohort (APC) model. The HCC deaths were determined for each cohort with its weighted influence. The confidence interval (CI) of the weighted mean is fairly narrow (compared to the equally weighted estimates). Due to the fairly narrow CI with less uncertainty, the weighted mean estimation was used as a means for forecasting. With the multistage method, it is recommended to use weighted mean estimation based on a regression model to evaluate the cohort effect in the age-period contingency table data.

The most common primary malignant tumor of the liver is hepatocellular carcinoma (HCC). Its mortality rate ranks fifth in men and eighth in women (6% of men and 3% of women) 1 among all malignant tumors worldwide. In Taiwan, it is the most common cancer in men and the second most common cancer in women (21.8% of men and 14.2% of women) 2. It is estimated that since 2000, the annual number of HCCs diagnosed worldwide is 564,000, among which 398,000 are men and 166,000 are women 3. In epidemiology, the most common way to explain the relationship between age, period, and cohort (APC) variables is tha....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Data sources

To demonstrate the calculations, we used annual data on HCC mortality from 1976 to 2015 for men and women in Taiwan. Statistical package for social sciences (SPSS) version 24.0 for Windows and Microsoft Excel were used to execute the protocols for this study.

  1. Have the HCC physician classify the patients' clinical symptoms, laboratory tests and medical imaging results to give a diagnosis code according to the International Classification of Disease (ICD) Code, IC.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The mortality data were demonstrated for 10 five-year age groups (40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, and 85+) and 8 five-year time periods (1976-1980, 1981-1985, 1986-1990, 1991-1995, 1996-2000, 2001-2005, 2006-2010 and 2011-2015). The number of cohort groups was selected by subtracting one from the total number of age-period groups: 10 (five-year age groups) + 8 (five-year time periods) -1 = 17 birth cohorts, with the birth cohort groups denoted by mid-cohort years as 1891, 1896, 1901, 1906, .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Due to the time trend of HCC mortality, conventional models underestimate some important features hidden in the data (such as cohort effects), and conventional analyses that use simple linear extrapolation of the observed logarithmic age correction rate show significantly reduced accuracy in their predictions. It is clear that this trend has continued for 35 years and will trend upwards in the next few years if we directly observe the long-term trend of HCC mortality in Taiwan from 1976 to 2015 (Figu.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by Taipei Tzu Chi Hospital TCRD-TPE-109-RT-8 (2/3) and TCRD-TPE-109-39 (2/2).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
not applicable not applicable not applicable not applicable

  1. Kuntz, E., Kuntz, H. D. . Hepatology: Principles and Practice. , 774 (2006).
  2. McGlynn, K. A., et al. International trends and patterns of primary liver cancer. International Journal of Cancer. 94 (2), 290-296 (2001).
  3. Bosch, F. X., Ribes, J., Diaz, M., Cleries, R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 127, 5-16 (2004).
  4. Tzeng, I. S., Ng, C. Y., Chen, J. Y., Chen, L. S., Wu, C. C. Using weighted regression model for estimating cohort effect in age-period contingency table data. Oncotarget. 9 (28), 19826-19835 (2018).
  5. Tzeng, I. S., Lee, W. C. Forecasting hepatocellular carcinoma mortality in Taiwan using an age-period-cohort model. Asia-Pacific Journal of PublicHealth. 27, 65-73 (2015).
  6. Tzeng, I. S., et al. Predicting emergency departments visit rates from septicemia in Taiwan using an age-period-cohort model, 1998 to 2012. Medicine. 95, 5598 (2016).
  7. Chen, S. H., et al. Period and Cohort Analysis of Rates of Emergency Department Visits Due to Pneumonia in Taiwan, 1998-2012. Risk Management and Healthcare Policy. 13, 1459-1466 (2020).
  8. Keyes, K. M., Li, G. A multiphase method for estimating cohort effects in age-period contingency table data. Annals of Epidemiology. 20, 779-785 (2010).
  9. Tukey, J. . Exploratory data analysis Reading: MS. , (1977).
  10. Selvin, S. . Statistical analysis of epidemiologic data. , (1996).
  11. Légaré, G., Hamel, D. An age-period-cohort approach to analyzing trends in suicide in Quebec between 1950 and 2009. Canadian Journal of Public Health. 104, 118-123 (2013).
  12. Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of Viral Hepatitis. 11, 97-107 (2004).
  13. Chang, M. H., et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. New England Journal of Medicine. 336, 1855-1859 (1997).
  14. Lu, F. T., Ni, Y. H. Elimination of mother-to-infant transmission of hepatitis B virus: 35 years of experience. Pediatric Gastroenterology, Hepatology & Nutrition. 23 (4), 311-318 (2020).
  15. Chien, Y. C., Jan, C. F., Kuo, H. S., Chen, C. J. Nationwide hepatitis B vaccination program in Taiwan: effectiveness in the 20 years after it was launched. Epidemiologic Reviews. 28, 126-135 (2006).
  16. Ahmad, O. B., et al. Age standardization of rates: a new WHO standard. Geneva: GPE Discussion Paper Series. World Health Organization. , 31 (2005).
  17. da Silva, C. P., Emídio, E. S., de Marchi, M. R. Method validation using weighted linear regression models for quantification of UV filters in water samples. Talanta. 131, 221-227 (2015).
  18. Dawes, R. M. The robust beauty of improper linear models in decision making. American Psychologist. 34, 571-582 (1979).
  19. Dawes, R. M., Corrigan, B. Linear models in decision making. Psychological Bulletin. 81, 95-106 (1974).
  20. Einhorn, H. J., Hogarth, R. M. Unit weighting schemes for decision making. Organizational Behavior and Human Performance. 13, 171-192 (1975).
  21. Wang, W., et al. Association of hepatitis B virus DNA level and follow-up interval with hepatocellular carcinoma recurrence. JAMA Network Open. 3 (4), 203707 (2020).
  22. Holford, T. R. The estimation of age, period and cohort effects for vital rates. Biometrics. 39, 311-324 (1983).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved