A subscription to JoVE is required to view this content. Sign in or start your free trial.
The overall goal of this procedure is to describe a method for self-administration of drugs that can be used in mouse models of feeding and obesity.
Preclinical studies in mice often rely on invasive protocols, such as injections or oral gavage, to deliver drugs. These stressful routes of administration have significant effects on important metabolic parameters including food intake and body weight. Although an attractive option to circumvent this is to compound the drug in rodent food or dissolve it in water, these approaches also have limitations as they are affected by drug stability at room temperature for extended periods of time, the drug's solubility in water, and that the dosing is highly dependent on timing of food or water intake. The constant availability of the drug also limits translational relevance on how drugs are administered to patients. To overcome these limitations, drugs can be mixed with highly palatable food, such as peanut butter, allowing mice to self-administer compounds. Mice reliably and reproducibly consume the drug/peanut butter pellet in a short time frame. This approach facilitates a delivery approach with minimal stress compared with an injection or gavage. This protocol demonstrates the approach of drug preparation, animal acclimatization to placebo delivery, and drug delivery. The implications of this approach are discussed in studies related to timing of drug administration and the circadian rhythm.
The goal of this method is to deliver drugs in mice via a non-invasive, minimally stressful procedure. Preclinical studies in mice often rely on stressful, invasive routes of drug administration that can have significant impacts on metabolic parameters. For example, repetitive daily oral gavage can significantly decrease caloric intake and weight gain in mice1. In addition, oral gavage can be technically challenging and has the potential to cause injuries. As an alternative, mice can self-administer compounds that are mixed in their food or dissolved in their drinking water 2. However, this approach has a major limitatio....
All procedures involving animal subjects have been approved by the Institutional Animal Care and Use Committee (IACUC) at the University of California, San Diego.
1. Making the drug-peanut butter pellet
In the example presented here, peanut butter was used to deliver risperidone to mice daily for 14 days.
This study shows the chronic delivery of risperidone via this method facilitates highly reproducible increase in food intake and body weight compared with control (Figure 1a,b). In addition, this delivery method results in highly consistent data compared with alternative, more stressful delivery approaches such as intraperitoneal injections (
When conducting this protocol, it is important to be consistent with the accuracy of the measurements of food intake and body weight and the timing of drug administration throughout the study. While this self-administration method requires a significant training phase, this is particularly important to acclimate the mice to the novelty of the peanut butter and ensure mice consume the drug at the time given. Once established, it also offers great experimental flexibility and can be modified and adapted to deliver drugs at.......
This work was supported by the National Institutes of Health grant R01DK117872 awarded to OO and the Larry L Hillblom Foundation Fellowship awarded to RCZ.
....Name | Company | Catalog Number | Comments |
C57B6/J mice | Jackson Labs, Sacramento, CA, USA | 664 | |
corticosterone pellet mold | Ted Pella Inc, Redding, CA, USA | 106A | |
Mouse igloo | VWR, Visalia, CA, USA | 89067-850 | cage enrichment |
peanut butter | Jif Peanut Butter, Orrville, OH, USA | Creamy peanut butter | |
pestle and mortar | VWR, Visalia, CA, USA | 470148-960 | |
risperidone | Patriot Pharmaceuticals, Horsham, PA, USA | 50458-593-50 | |
rodent chow | LabDiet, St. Louis, MO, USA | 5001 | |
weigh boat | VWR, Visalia, CA, USA | 10803-148 | |
weighing scale | Mettler Toledo, Greifensee, Switzerland | MS104TS | |
Wypall paper X60 | Kimberly-Clark, Corinth, MS, USA | 34865-05 | absorbent paper bedding |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved