JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

تصنيع وتشغيل التدفق المستمر ، نظام التثقيب الكهربائي الدقيق مع كشف النفاذية

Published: January 7th, 2022

DOI:

10.3791/63103

1The Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 2The Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey

يصف هذا البروتوكول تقنيات التصنيع الدقيق المطلوبة لبناء جهاز التثقيب الكهربائي للميكروفلويديك على رقاقة. يقوم الإعداد التجريبي بإجراء عمليات نقل على مستوى خلية واحدة خاضعة للرقابة في تدفق مستمر ويمكن تمديدها إلى إنتاجية أعلى مع التحكم القائم على السكان. يتم توفير تحليل يوضح القدرة على مراقبة درجة نفاذية غشاء الخلية كهربائيا في الوقت الفعلي.

تعتمد الابتكارات العلاجية الحالية، مثل العلاج بالخلايا التائية ذات مستقبلات المستضدات الوهمية، بشكل كبير على توصيل الجينات بوساطة فيروسية. على الرغم من كفاءة هذه التقنية ، إلا أنها مصحوبة بتكاليف تصنيع عالية ، مما أدى إلى الاهتمام باستخدام طرق بديلة لتوصيل الجينات. التثقيب الكهربائي هو نهج كهروفيزيائي وغير فيروسي لتوصيل الجينات والمواد الخارجية الأخرى داخل الخلايا. عند تطبيق مجال كهربائي ، يسمح غشاء الخلية مؤقتا بالتوصيل الجزيئي إلى الخلية. عادة ، يتم إجراء التثقيب الكهربائي على المقياس الكلي لمعالجة أعداد كبيرة من الخلايا. ومع ذلك ، يتطلب هذا النهج تطويرا مكثفا للبروتوكول التجريبي ، وهو أمر مكلف عند العمل مع أنواع الخلايا الأولية والتي يصعب نقلها. أدى تطوير البروتوكول المطول ، إلى جانب متطلبات الفولتية الكبيرة لتحقيق شدة المجال الكهربائي الكافية لاختراق الخلايا ، إلى تطوير أجهزة التثقيب الكهربائي على نطاق صغير. يتم تصنيع أجهزة التثقيب الكهربائي الدقيقة هذه باستخدام تقنيات التصنيع الدقيق الشائعة وتسمح بتحكم تجريبي أكبر مع إمكانية الحفاظ على قدرات إنتاجية عالية. يعتمد هذا العمل على تقنية التثقيب الكهربائي للموائع الدقيقة القادرة على اكتشاف مستوى نفاذية غشاء الخلية على مستوى خلية واحدة تحت التدفق المستمر. ومع ذلك ، اقتصرت هذه التقنية على 4 خلايا تمت معالجتها في الثانية ، وبالتالي تم اقتراح نهج جديد لزيادة إنتاجية النظام وتقديمه هنا. هذه التقنية الجديدة ، التي يشار إليها باسم التحكم في التغذية المرتدة القائمة على سكان الخلية ، تأخذ في الاعتبار استجابة نفاذية الخلية لمجموعة متنوعة من ظروف نبض التثقيب الكهربائي وتحدد أفضل ظروف نبض التثقيب الكهربائي لنوع الخلية قيد الاختبار. ثم يتم استخدام وضع الإنتاجية الأعلى ، حيث يتم تطبيق هذه النبضة "المثلى" على تعليق الخلية أثناء النقل. يتم عرض خطوات تصنيع الجهاز وإعداد وتشغيل تجارب الموائع الدقيقة وتحليل النتائج بالتفصيل. أخيرا ، يتم عرض تقنية التثقيب الكهربائي الدقيق هذه من خلال تقديم ترميز بلازميد الحمض النووي لبروتين الفلورسنت الأخضر (GFP) في خلايا HEK293.

تعتمد الابتكارات العلاجية الحالية في البحوث الطبية الحيوية ، مثل العلاج الخلوي CAR-T (الخلايا التائية المهندسة لمستقبلات المستضد الخيمري) والتحرير الجيني باستخدام CRISPR (تسلسلات الحمض النووي المتكررة القصيرة المتباعدة بانتظام / Cas9 ، بشكل كبير على القدرة على توصيل المواد الخارجية بنجاح وكفاءة إلى الفضاء داخل الخلايا1. في علاج CAR-T ، يستخدم المعيار الذهبي لأداء خطوة توصيل الجينات في تصنيع العلاج بالخلايا النواقل الفيروسية2. على الرغم من أن توصيل الجينات بوساطة فيروسية هو طريقة توصيل فعالة ، إلا أن له أيضا العديد من العيوب. وتشمل هذه تكاليف التصنيع ، والسمية الخلوية ، والمناعة ، والطفرات / إمكانية تكوين الورم ، وقيود ال....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

ملاحظة: يجب على المستخدمين مراجعة كافة MSDS للمواد والمستلزمات المستخدمة في هذا البروتوكول. يجب ارتداء معدات الوقاية الشخصية المناسبة في كل خطوة واستخدام تقنية معقمة أثناء التجربة. تناقش الأقسام 1-7 تصنيع الجهاز.

1. تصنيع الجهاز - تصميم القناع

ملاحظة: را?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

يسلط الشكل 4 الضوء على مبادئ التشغيل وراء اكتشاف نفاذية الغشاء على مستوى الخلية الواحدة لسعة نبضة واحدة. بعد بدء تجربة التثقيب الكهربائي ، تحدد خوارزمية الكشف عن الخلايا عتبة مثالية للكشف عن الخلايا عبر طريقة الكشف القائمة على المنحدر نقطة تلو الأخرى. ثم يراقب النظام باست?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

تركز المنهجية المقدمة في هذا البروتوكول بشكل أساسي على التصنيع الدقيق لجهاز الموائع الدقيقة الذي يتم دمجه بعد ذلك في إعداد تجريبي متخصص للتثقيب الكهربائي. يشير مصطلح "الوصفة" ، الذي يستخدم غالبا عند وصف تفاصيل عملية التصنيع الدقيق ، إلى أهمية اتباع / تحسين كل خطوة لتصنيع جهاز فعال بنجاح. و?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

يود المؤلفون الاعتراف بالدعم المالي المقدم من المؤسسة الوطنية للعلوم (NSF CBET 0967598 ، DBI IDBR 1353918) وتدريب الخريجين التابع لوزارة التعليم الأمريكية في المجالات الناشئة للطب الدقيق والشخصي (P200A150131) لتمويل طالب الدراسات العليا JJS على الزمالة.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
150-mm diameter petri dishesVWR25384-326step 6.1.1 to secure wafer
24-well tissue culture platesVWR10062-896step 10.3.6 to plate electroporated cells
33220A Waveform/Function generatorAgilentstep 9.2.3 electroporation pulse generator
4'' Si-wafersUniversity Wafersubsection 2.1 for microfluidic channel fabrication
6-well tissue culture platesVWR10062-892step 8.1.8 to plate cells
AcetoneFisher ScientificA18-4step 2.1.2 for cleaning and  step 5.1 photoresist lift-off
Allegra X-22R CentrifugeBeckman Coultersteps 8.1.4 , 8.3.2. and 8.3.3. to spin down cells
AutoCAD 2018Autodesksubsection 1.1. to design transparency masks
Buffered oxide etchant 10:1VWR901621-1Lsubsection 3.1 for HF etching
CCD Monochrome microscope cameraHamamatsuOrca 285 C4742-96-12G04step 11.2.3. for imaging
CMOS camera- Sensicam QE 1.4MPPCOsubsection 9.3 part of the experimental setup
Conductive EpoxyCircuitWorksCW2400subsection 7.6. for wire attachement
Conical Centrifuge Tubes, 15 mLFisher Scientific14-959-70Cstep 8.1.4. for cell centrifuging
Dektak 3ST Surface ProfilometerVeeco (Sloan/Dektak)step 2.1.15 and 5.4 for surface profilometry
Disposable biopsy punch, 0.75 mmRobbins InstrumentsRBP075step 6.2.3 for inlet access
Disposable biopsy punch, 3 mmRobbins InstrumentsRBP30Pstep 6.2.3 for outlet access
DRAQ5abcamab108410step 11.2.2. for live cell staining
Dulbecco’s Modified Eagle’s MediumThermoFisher Scientific11885084step 8.1.2. part of media composition
E3631A Bipolar Triple DC power supplyAgilentstep 9.2.1.-9.2.2.part of the experimental setup
Eclipse TE2000-U Inverted  MicroscopeNikon subsection 9.3. part of the experimental setup
EVG620 UV Lithography SystemEVG step 2.1.9. and 2.2.7. for UV Exposure
Fetal Bovine SerumNeuromicsFBS001step 8.1.2. part of media composition
FS20 Ultrasonic CleanerFisher Scientificsubsection 5.1. for photoresist lift-off
Glass Media Bottle with Cap, 100mLFisher ScientificFB800100step 8.2.1. for buffer storage
Glass Media Bottle with Cap, 500mLFisher ScientificFB800500step 8.1.2.for media storage
HEK-293 cell lineATCCCRL-1573subsection 8.1 for cell culturing
HEPES buffer solutionSigma Aldrich83264-100ML-Fstep 8.2.1 part of electroporation buffer composition
HexamethyldisilazaneSigma Aldrich379212-25MLstep 2.2.3 adhesion promoter
HF2LI Lock-in AmplifierZurich Instrumentssubsection 9.2 part of the experimental setup
HF2TA Current amplifierZurich Instrumentssubsection 9.2 part of the experimental setup
Isopropyl AlcoholFisher ScientificA459-1step 2.1.2 for cleaning, step 2.1.14 for rinsing wafer following SU-8 development, and step 6.3.1 for cleaning PDMS
IX81 fluorescence microscopeOlympusstep 11.2.3 for imaging
L-Glutamine SolutionSigma AldrichG7513-20MLstep 8.1.2. part of media composition
M16878/1BFA 22 gauge wireAWCB22-1subsection 7.5 for device fabrication
Magnesium chlorideSigma Aldrich208337-100Gstep 8.1.2 part of electroporation buffer composition
MF 319 DeveloperKayaku Advanced Materials10018042step 2.2.9. photoresist developer
Microposit S1818 photoresistKayaku Advanced Materials1136925step 2.2.4 positive photoresist for electrode patterning
Microscope slides, 75 x 25 mmVWR16004-422step 2.2.1 electrode soda lime glass substrate
Model 2350 High voltage amplifierTEGAM2350step 9.2.5. part of the experimental setup
National Instruments LabVIEWNational Instrumentsdata acquisition
Needle, 30G x 1 inBD Scientific305128step 10.1.1. part of the system priming
PA90 IC OPAMP Power circuitDigi-key598-1330-NDPart of the custom circuit
Penicillin-StreptomycinSigma AldrichP4458-20MLstep 8.1.2. part of media composition
Plasmid pMAX-GFPLonzaVCA-1003step 8.3.4. for intracellular delivery
Plastic tubing, 0.010'' x 0.030"VWR89404-300step 10.1.2. for system priming
Platinum targetsKurt J. Leskersubsection 4.2. for physical vapor deposition
Potassium chlorideSigma AldrichP9333-500Gstep 8.2.1. part of electroporation buffer composition
Pump 11 PicoPlus microfluidic syringe pumpHarvard ApparatusMA1 70-2213step 10.1.4. for system priming
PVD75 Physical vapor deposition systemKurt J. Leskersubsection 4.1. for physical vapor deposition
PWM32 Spinner SystemHeadway Researchsteps 2.1.6 and 2.2.2. for substrate coating with photoresist
PX-250 Plasma treatment systemMarch Instrumentssubsection 7.2 for PDMS and glass substrate bonding
SDG1025 Function/Waveform generatorSiglentstep 9.2.2. part of the experimental setup
Sodium hydroxideSigma AldrichS8045-500Gstep 8.2.1. part of electroporation buffer composition
SU-8 2010 negative photoresistKayaku Advanced MaterialsY111053step 2.1.7. for microfluidic channel patterning
SU-8 developerMicrochemY010200step 2.1.12. for photoresist developing
SucroseSigma AldrichS7903-1KGstep 8.2.1. part of electroporation buffer composition
Sylgard 184 elastomer kitDow Corning3097358-1004step 6.2.1  10 : 1 mixture of PDMS polymer and hardening agent
Syringe, 1 mlBD Scientific309628step 8.3.4. part of system priming
SZ61 Stereomicroscope SystemOlympussubsection 7.3. for channel and electrode alignment
Tissue Culture Treated T25 FlasksFalcon353108step 8.1.2 for cell culturing
Titanium targetsKurt J. Leskersubsection 4.2. for physical vapor deposition
Transparency masksCAD/ART Servicessteps 2.1.9. and 2.2.7. for photolithography
Trichloro(1H,1H,2H,2H-perfluorooctyl)silaneSigma Aldrich448931-10Gstep 6.1.2. for wafer silanization
Trypsin-EDTA solutionSigma AldrichT4049-100MLsteps 8.1.3. and 8.3.1. for cell harvesting

  1. Gao, Q. Q., et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Medicine. 8 (9), 4254-4264 (2019).
  2. Aijaz, A., et al. Biomanufacturing for clinically advanced cell therapies. Nature Biomedical Engineering. 2 (6), 362-376 (2018).
  3. Milone, M. C., O'Doherty, U. Clinical use of lentiviral vectors. Leukemia. 32 (7), 1529-1541 (2018).
  4. Weaver, J. C., Chizmadzhev, Y. A. Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics. 41 (2), 135-160 (1996).
  5. Kotnik, T., Rems, L., Tarek, M., Miklavcic, D. Membrane electroporation and electropermeabilization: mechanisms and models. Annual Review of Biophysics. 48, 63-91 (2019).
  6. Rosazza, C., Meglic, S. H., Zumbusch, A., Rols, M. P., Miklavcic, D. Gene electrotransfer: A mechanistic perspective. Current Gene Therapy. 16 (2), 98-129 (2016).
  7. Clauss, J., et al. Efficient non-viral T-cell engineering by sleeping beauty minicircles diminishing DNA toxicity and miRNAs silencing the endogenous T-cell receptors. Human Gene Therapy. 29 (5), 569-584 (2018).
  8. Sherba, J. J., et al. The effects of electroporation buffer composition on cell viability and electro-transfection efficiency. Scientific Reports. 10 (1), 3053 (2020).
  9. Lu, H., Schmidt, M. A., Jensen, K. F. A microfluidic electroporation device for cell lysis. Lab on a Chip. 5 (1), 23-29 (2005).
  10. Kar, S., et al. Single-cell electroporation: current trends, applications and future prospects. Journal of Micromechanics and Microengineering. 28 (12), (2018).
  11. Shi, J. F., et al. A review on electroporation-based intracellular delivery. Molecules. 23 (11), (2018).
  12. Wang, S. N., Zhang, X. L., Wang, W. X., Lee, L. J. Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells. Analytical Chemistry. 81 (11), 4414-4421 (2009).
  13. Wei, W. J., et al. An implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo. Microsystems & Nanoengineering. 1, (2015).
  14. Maschietto, M., Dal Maschio, M., Girardi, S., Vassanelli, S. In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes. Scientific Reports. 11 (1), (2021).
  15. Wu, Q. R., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomedical Engineering Online. 19 (1), (2020).
  16. Pandey, C. M., et al. Microfluidics Based Point-of-Care Diagnostics. Biotechnology Journal. 13 (1), (2018).
  17. Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., Prakash, H. Recent advances in biosensor technology for potential applications - An overview. Frontiers in Bioengineering and Biotechnology. 4, (2016).
  18. Nuxoll, E. BioMEMS in drug delivery. Advanced Drug Delivery Reviews. 65 (11-12), 1611-1625 (2013).
  19. Kang, S., Kim, K. H., Kim, Y. C. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode. Scientific Reports. 5, (2015).
  20. Zheng, M. D., Shan, J. W., Lin, H., Shreiber, D. I., Zahn, J. D. Hydrodynamically controlled cell rotation in an electroporation microchip to circumferentially deliver molecules into single cells. Microfluidics and Nanofluidics. 20 (1), (2016).
  21. Santra, T. S., Kar, S., Chang, H. Y., Tseng, F. G. Nano-localized single-cell nano-electroporation. Lab on a Chip. 20 (22), 4194-4204 (2020).
  22. Lee, W. G., Demirci, U., Khademhosseini, A. Microscale electroporation: challenges and perspectives for clinical applications. Integrative Biology. 1 (3), 242-251 (2009).
  23. Santra, T. S., Chang, H. Y., Wang, P. C., Tseng, F. G. Impact of pulse duration on localized single-cell nano-electroporation. Analyst. 139 (23), 6249-6258 (2014).
  24. Geng, T., Lu, C. Microfluidic electroporation for cellular analysis and delivery. Lab on a Chip. 13 (19), 3803-3821 (2013).
  25. Hsi, P., et al. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing. Lab on a Chip. 19 (18), 2978-2992 (2019).
  26. Khine, M., Ionescu-Zanetti, C., Blatz, A., Wang, L. P., Lee, L. P. Single-cell electroporation arrays with real-time monitoring and feedback control. Lab on a Chip. 7 (4), 457-462 (2007).
  27. Ye, Y. F., et al. Single-cell electroporation and real-time electrical monitoring on a microfluidic chip. 2020 33rd Ieee International Conference on Micro Electro Mechanical Systems (Mems 2020). , 1040-1043 (2020).
  28. Huang, Y., Rubinsky, B. Microfabricated electroporation chip for single cell membrane permeabilization. Sensors and Actuators a-Physical. 89 (3), 242-249 (2001).
  29. Guo, X. L., Zhu, R. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Scientific Reports. 6, (2016).
  30. Punjiya, M., Nejad, H. R., Mathews, J., Levin, M., Sonkusale, S. A flow through device for simultaneous dielectrophoretic cell trapping and AC electroporation. Scientific Reports. 9, (2019).
  31. Wang, H. Y., Lu, C. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply. Biotechnology and Bioengineering. 100 (3), 579-586 (2008).
  32. Zheng, M. D., et al. Continuous-flow, electrically-triggered, single cell-level electroporation. Technology. 5 (1), 31-41 (2017).
  33. Batista Napotnik, T., Miklavcic, D. In vitro electroporation detection methods - An overview. Bioelectrochemistry. 120, 166-182 (2018).
  34. MICROPOSIT™ S1800® G2 Series Photoresists. KAYAKU Available from: https://kayakuam.com/wp-content/uploads/2019/09/S1800-G2.pdf (2021)
  35. SU-8 2000 Permanent Negative Epoxy Photoresist. KAYAKU Available from: https://kayakuam.com/wp-content/uploads/2020/08/KAM-SU-8-2000-2000.5-2015-Datasheet-8.13.20-final.pdf (2001)
  36. Substrate Preparation. MicroChemicals Available from: https://www.microchemicals.com/technical_information/subtrate_cleaning_adhesion_photoresist.pdf (2021)
  37. Lisinenkova, M., Hahn, L., Schulz, J. . 4M 2006 - Second International Conference on Multi-Material Micro Manufacture. , 91-94 (2006).
  38. Beh, C. W., Zhou, W. Z., Wang, T. H. PDMS-glass bonding using grafted polymeric adhesive - alternative process flow for compatibility with patterned biological molecules. Lab on a Chip. 12 (20), 4120-4127 (2012).
  39. PA90 High Voltage Power Operational Amplifiers. APEX Available from: https://www.apexanalog.com/resources/products/pa90u.pdf (2021)
  40. Lissandrello, C. A., et al. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Scientific Reports. 10 (1), 18045 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved