JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

La fabricación y operación de un sistema de microelectroporación de flujo continuo con detección de permeabilización

Published: January 7th, 2022

DOI:

10.3791/63103

1The Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 2The Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey

Este protocolo describe las técnicas de microfabricación necesarias para construir un dispositivo de electroporación microfluídica de laboratorio en un chip. La configuración experimental realiza transfecciones controladas a nivel de una sola célula en un flujo continuo y se puede extender a rendimientos más altos con control basado en la población. Se proporciona un análisis que muestra la capacidad de monitorear eléctricamente el grado de permeabilización de la membrana celular en tiempo real.

Las innovaciones terapéuticas actuales, como la terapia de células CAR-T, dependen en gran medida de la administración de genes mediada por virus. Aunque eficiente, esta técnica se acompaña de altos costos de fabricación, lo que ha provocado un interés en el uso de métodos alternativos para la administración de genes. La electroporación es un enfoque electrofísico, no viral para la entrega intracelular de genes y otros materiales exógenos. Tras la aplicación de un campo eléctrico, la membrana celular permite temporalmente la entrega molecular en la célula. Típicamente, la electroporación se realiza en la macroescala para procesar un gran número de células. Sin embargo, este enfoque requiere un extenso desarrollo de protocolos empíricos, lo cual es costoso cuando se trabaja con tipos de células primarias y difíciles de transfetar. El largo desarrollo del protocolo, junto con el requisito de grandes voltajes para lograr suficientes intensidades de campo eléctrico para permeabilizar las células, ha llevado al desarrollo de dispositivos de electroporación a microescala. Estos dispositivos de microelectroporación se fabrican utilizando técnicas comunes de microfabricación y permiten un mayor control experimental con el potencial de mantener altas capacidades de rendimiento. Este trabajo se basa en una tecnología de electroporación microfluídica capaz de detectar el nivel de permeabilización de la membrana celular a nivel de una sola célula bajo flujo continuo. Sin embargo, esta tecnología se limitó a 4 celdas procesadas por segundo, y por lo tanto se propone y presenta aquí un nuevo enfoque para aumentar el rendimiento del sistema. Esta nueva técnica, denominada control de retroalimentación basado en la población celular, considera la respuesta de permeabilización celular a una variedad de condiciones de pulso de electroporación y determina las condiciones de pulso de electroporación más adecuadas para el tipo de célula bajo prueba. Luego se utiliza un modo de mayor rendimiento, donde este pulso "óptimo" se aplica a la suspensión celular en tránsito. Los pasos para fabricar el dispositivo, configurar y ejecutar los experimentos microfluídicos y analizar los resultados se presentan en detalle. Finalmente, esta tecnología de microelectroporación se demuestra mediante la entrega de un plásmido de ADN que codifica para la proteína fluorescente verde (GFP) en las células HEK293.

Las innovaciones terapéuticas actuales en la investigación biomédica, como la terapia celular CAR-T (Chimeric Antigen Receptor Engineered T cell) y la edición genética utilizando CRISPR (secuencias de ADN de repetición palindrómica cortas agrupadas regularmente interespaciadas) / Cas9, dependen en gran medida de la capacidad de entregar material exógeno tanto con éxito como de manera eficiente en el espacio intracelular1. En la terapia CAR-T, el estándar de oro para realizar el paso de entrega de genes en la fabricación de terapia celular es el uso de vectores virales2. Aunque la administración de genes mediada por virus....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTA: Los usuarios deben revisar todas las MSDS para los materiales y suministros utilizados en este protocolo. Se debe usar EPP apropiado en cada paso y se debe usar una técnica estéril durante la experimentación. Las secciones 1-7 discuten la fabricación del dispositivo.

1. Fabricación del dispositivo: diseño de la máscara

NOTA: Consulte la Figura 2 para obtener una ilustración del proceso de microfabricación. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La Figura 4 destaca los principios operativos detrás de la detección de permeabilización de membrana a nivel de una sola célula para una amplitud de pulso única. Tras el inicio del experimento de electroporación, el algoritmo de detección celular determina un umbral óptimo para la detección celular a través de un método de detección punto por punto, basado en pendientes. Luego, el sistema monitorea continuamente (1) un cambio negativo significativo en la corriente eléctrica medi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La metodología presentada dentro de este protocolo se centra principalmente en la microfabricación de un dispositivo microfluídico que luego se integra en una configuración experimental especializada de electroporación. El término "receta", que a menudo se usa cuando se describen los detalles del proceso de microfabricación, sugiere la importancia de seguir / optimizar cada paso para fabricar con éxito un dispositivo que funcione. Sin embargo, ciertos pasos críticos dentro del proceso, cuando no están optimizad.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Los autores desean agradecer el apoyo financiero de la National Science Foundation (NSF CBET 0967598, DBI IDBR 1353918) y la Capacitación de Posgrado en Áreas Emergentes de Precisión y Medicina Personalizada del Departamento de Educación de los Estados Unidos (P200A150131) para financiar al estudiante graduado J.J.S. en beca.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
150-mm diameter petri dishesVWR25384-326step 6.1.1 to secure wafer
24-well tissue culture platesVWR10062-896step 10.3.6 to plate electroporated cells
33220A Waveform/Function generatorAgilentstep 9.2.3 electroporation pulse generator
4'' Si-wafersUniversity Wafersubsection 2.1 for microfluidic channel fabrication
6-well tissue culture platesVWR10062-892step 8.1.8 to plate cells
AcetoneFisher ScientificA18-4step 2.1.2 for cleaning and  step 5.1 photoresist lift-off
Allegra X-22R CentrifugeBeckman Coultersteps 8.1.4 , 8.3.2. and 8.3.3. to spin down cells
AutoCAD 2018Autodesksubsection 1.1. to design transparency masks
Buffered oxide etchant 10:1VWR901621-1Lsubsection 3.1 for HF etching
CCD Monochrome microscope cameraHamamatsuOrca 285 C4742-96-12G04step 11.2.3. for imaging
CMOS camera- Sensicam QE 1.4MPPCOsubsection 9.3 part of the experimental setup
Conductive EpoxyCircuitWorksCW2400subsection 7.6. for wire attachement
Conical Centrifuge Tubes, 15 mLFisher Scientific14-959-70Cstep 8.1.4. for cell centrifuging
Dektak 3ST Surface ProfilometerVeeco (Sloan/Dektak)step 2.1.15 and 5.4 for surface profilometry
Disposable biopsy punch, 0.75 mmRobbins InstrumentsRBP075step 6.2.3 for inlet access
Disposable biopsy punch, 3 mmRobbins InstrumentsRBP30Pstep 6.2.3 for outlet access
DRAQ5abcamab108410step 11.2.2. for live cell staining
Dulbecco’s Modified Eagle’s MediumThermoFisher Scientific11885084step 8.1.2. part of media composition
E3631A Bipolar Triple DC power supplyAgilentstep 9.2.1.-9.2.2.part of the experimental setup
Eclipse TE2000-U Inverted  MicroscopeNikon subsection 9.3. part of the experimental setup
EVG620 UV Lithography SystemEVG step 2.1.9. and 2.2.7. for UV Exposure
Fetal Bovine SerumNeuromicsFBS001step 8.1.2. part of media composition
FS20 Ultrasonic CleanerFisher Scientificsubsection 5.1. for photoresist lift-off
Glass Media Bottle with Cap, 100mLFisher ScientificFB800100step 8.2.1. for buffer storage
Glass Media Bottle with Cap, 500mLFisher ScientificFB800500step 8.1.2.for media storage
HEK-293 cell lineATCCCRL-1573subsection 8.1 for cell culturing
HEPES buffer solutionSigma Aldrich83264-100ML-Fstep 8.2.1 part of electroporation buffer composition
HexamethyldisilazaneSigma Aldrich379212-25MLstep 2.2.3 adhesion promoter
HF2LI Lock-in AmplifierZurich Instrumentssubsection 9.2 part of the experimental setup
HF2TA Current amplifierZurich Instrumentssubsection 9.2 part of the experimental setup
Isopropyl AlcoholFisher ScientificA459-1step 2.1.2 for cleaning, step 2.1.14 for rinsing wafer following SU-8 development, and step 6.3.1 for cleaning PDMS
IX81 fluorescence microscopeOlympusstep 11.2.3 for imaging
L-Glutamine SolutionSigma AldrichG7513-20MLstep 8.1.2. part of media composition
M16878/1BFA 22 gauge wireAWCB22-1subsection 7.5 for device fabrication
Magnesium chlorideSigma Aldrich208337-100Gstep 8.1.2 part of electroporation buffer composition
MF 319 DeveloperKayaku Advanced Materials10018042step 2.2.9. photoresist developer
Microposit S1818 photoresistKayaku Advanced Materials1136925step 2.2.4 positive photoresist for electrode patterning
Microscope slides, 75 x 25 mmVWR16004-422step 2.2.1 electrode soda lime glass substrate
Model 2350 High voltage amplifierTEGAM2350step 9.2.5. part of the experimental setup
National Instruments LabVIEWNational Instrumentsdata acquisition
Needle, 30G x 1 inBD Scientific305128step 10.1.1. part of the system priming
PA90 IC OPAMP Power circuitDigi-key598-1330-NDPart of the custom circuit
Penicillin-StreptomycinSigma AldrichP4458-20MLstep 8.1.2. part of media composition
Plasmid pMAX-GFPLonzaVCA-1003step 8.3.4. for intracellular delivery
Plastic tubing, 0.010'' x 0.030"VWR89404-300step 10.1.2. for system priming
Platinum targetsKurt J. Leskersubsection 4.2. for physical vapor deposition
Potassium chlorideSigma AldrichP9333-500Gstep 8.2.1. part of electroporation buffer composition
Pump 11 PicoPlus microfluidic syringe pumpHarvard ApparatusMA1 70-2213step 10.1.4. for system priming
PVD75 Physical vapor deposition systemKurt J. Leskersubsection 4.1. for physical vapor deposition
PWM32 Spinner SystemHeadway Researchsteps 2.1.6 and 2.2.2. for substrate coating with photoresist
PX-250 Plasma treatment systemMarch Instrumentssubsection 7.2 for PDMS and glass substrate bonding
SDG1025 Function/Waveform generatorSiglentstep 9.2.2. part of the experimental setup
Sodium hydroxideSigma AldrichS8045-500Gstep 8.2.1. part of electroporation buffer composition
SU-8 2010 negative photoresistKayaku Advanced MaterialsY111053step 2.1.7. for microfluidic channel patterning
SU-8 developerMicrochemY010200step 2.1.12. for photoresist developing
SucroseSigma AldrichS7903-1KGstep 8.2.1. part of electroporation buffer composition
Sylgard 184 elastomer kitDow Corning3097358-1004step 6.2.1  10 : 1 mixture of PDMS polymer and hardening agent
Syringe, 1 mlBD Scientific309628step 8.3.4. part of system priming
SZ61 Stereomicroscope SystemOlympussubsection 7.3. for channel and electrode alignment
Tissue Culture Treated T25 FlasksFalcon353108step 8.1.2 for cell culturing
Titanium targetsKurt J. Leskersubsection 4.2. for physical vapor deposition
Transparency masksCAD/ART Servicessteps 2.1.9. and 2.2.7. for photolithography
Trichloro(1H,1H,2H,2H-perfluorooctyl)silaneSigma Aldrich448931-10Gstep 6.1.2. for wafer silanization
Trypsin-EDTA solutionSigma AldrichT4049-100MLsteps 8.1.3. and 8.3.1. for cell harvesting

  1. Gao, Q. Q., et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Medicine. 8 (9), 4254-4264 (2019).
  2. Aijaz, A., et al. Biomanufacturing for clinically advanced cell therapies. Nature Biomedical Engineering. 2 (6), 362-376 (2018).
  3. Milone, M. C., O'Doherty, U. Clinical use of lentiviral vectors. Leukemia. 32 (7), 1529-1541 (2018).
  4. Weaver, J. C., Chizmadzhev, Y. A. Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics. 41 (2), 135-160 (1996).
  5. Kotnik, T., Rems, L., Tarek, M., Miklavcic, D. Membrane electroporation and electropermeabilization: mechanisms and models. Annual Review of Biophysics. 48, 63-91 (2019).
  6. Rosazza, C., Meglic, S. H., Zumbusch, A., Rols, M. P., Miklavcic, D. Gene electrotransfer: A mechanistic perspective. Current Gene Therapy. 16 (2), 98-129 (2016).
  7. Clauss, J., et al. Efficient non-viral T-cell engineering by sleeping beauty minicircles diminishing DNA toxicity and miRNAs silencing the endogenous T-cell receptors. Human Gene Therapy. 29 (5), 569-584 (2018).
  8. Sherba, J. J., et al. The effects of electroporation buffer composition on cell viability and electro-transfection efficiency. Scientific Reports. 10 (1), 3053 (2020).
  9. Lu, H., Schmidt, M. A., Jensen, K. F. A microfluidic electroporation device for cell lysis. Lab on a Chip. 5 (1), 23-29 (2005).
  10. Kar, S., et al. Single-cell electroporation: current trends, applications and future prospects. Journal of Micromechanics and Microengineering. 28 (12), (2018).
  11. Shi, J. F., et al. A review on electroporation-based intracellular delivery. Molecules. 23 (11), (2018).
  12. Wang, S. N., Zhang, X. L., Wang, W. X., Lee, L. J. Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells. Analytical Chemistry. 81 (11), 4414-4421 (2009).
  13. Wei, W. J., et al. An implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo. Microsystems & Nanoengineering. 1, (2015).
  14. Maschietto, M., Dal Maschio, M., Girardi, S., Vassanelli, S. In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes. Scientific Reports. 11 (1), (2021).
  15. Wu, Q. R., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomedical Engineering Online. 19 (1), (2020).
  16. Pandey, C. M., et al. Microfluidics Based Point-of-Care Diagnostics. Biotechnology Journal. 13 (1), (2018).
  17. Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., Prakash, H. Recent advances in biosensor technology for potential applications - An overview. Frontiers in Bioengineering and Biotechnology. 4, (2016).
  18. Nuxoll, E. BioMEMS in drug delivery. Advanced Drug Delivery Reviews. 65 (11-12), 1611-1625 (2013).
  19. Kang, S., Kim, K. H., Kim, Y. C. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode. Scientific Reports. 5, (2015).
  20. Zheng, M. D., Shan, J. W., Lin, H., Shreiber, D. I., Zahn, J. D. Hydrodynamically controlled cell rotation in an electroporation microchip to circumferentially deliver molecules into single cells. Microfluidics and Nanofluidics. 20 (1), (2016).
  21. Santra, T. S., Kar, S., Chang, H. Y., Tseng, F. G. Nano-localized single-cell nano-electroporation. Lab on a Chip. 20 (22), 4194-4204 (2020).
  22. Lee, W. G., Demirci, U., Khademhosseini, A. Microscale electroporation: challenges and perspectives for clinical applications. Integrative Biology. 1 (3), 242-251 (2009).
  23. Santra, T. S., Chang, H. Y., Wang, P. C., Tseng, F. G. Impact of pulse duration on localized single-cell nano-electroporation. Analyst. 139 (23), 6249-6258 (2014).
  24. Geng, T., Lu, C. Microfluidic electroporation for cellular analysis and delivery. Lab on a Chip. 13 (19), 3803-3821 (2013).
  25. Hsi, P., et al. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing. Lab on a Chip. 19 (18), 2978-2992 (2019).
  26. Khine, M., Ionescu-Zanetti, C., Blatz, A., Wang, L. P., Lee, L. P. Single-cell electroporation arrays with real-time monitoring and feedback control. Lab on a Chip. 7 (4), 457-462 (2007).
  27. Ye, Y. F., et al. Single-cell electroporation and real-time electrical monitoring on a microfluidic chip. 2020 33rd Ieee International Conference on Micro Electro Mechanical Systems (Mems 2020). , 1040-1043 (2020).
  28. Huang, Y., Rubinsky, B. Microfabricated electroporation chip for single cell membrane permeabilization. Sensors and Actuators a-Physical. 89 (3), 242-249 (2001).
  29. Guo, X. L., Zhu, R. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Scientific Reports. 6, (2016).
  30. Punjiya, M., Nejad, H. R., Mathews, J., Levin, M., Sonkusale, S. A flow through device for simultaneous dielectrophoretic cell trapping and AC electroporation. Scientific Reports. 9, (2019).
  31. Wang, H. Y., Lu, C. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply. Biotechnology and Bioengineering. 100 (3), 579-586 (2008).
  32. Zheng, M. D., et al. Continuous-flow, electrically-triggered, single cell-level electroporation. Technology. 5 (1), 31-41 (2017).
  33. Batista Napotnik, T., Miklavcic, D. In vitro electroporation detection methods - An overview. Bioelectrochemistry. 120, 166-182 (2018).
  34. MICROPOSIT™ S1800® G2 Series Photoresists. KAYAKU Available from: https://kayakuam.com/wp-content/uploads/2019/09/S1800-G2.pdf (2021)
  35. SU-8 2000 Permanent Negative Epoxy Photoresist. KAYAKU Available from: https://kayakuam.com/wp-content/uploads/2020/08/KAM-SU-8-2000-2000.5-2015-Datasheet-8.13.20-final.pdf (2001)
  36. Substrate Preparation. MicroChemicals Available from: https://www.microchemicals.com/technical_information/subtrate_cleaning_adhesion_photoresist.pdf (2021)
  37. Lisinenkova, M., Hahn, L., Schulz, J. . 4M 2006 - Second International Conference on Multi-Material Micro Manufacture. , 91-94 (2006).
  38. Beh, C. W., Zhou, W. Z., Wang, T. H. PDMS-glass bonding using grafted polymeric adhesive - alternative process flow for compatibility with patterned biological molecules. Lab on a Chip. 12 (20), 4120-4127 (2012).
  39. PA90 High Voltage Power Operational Amplifiers. APEX Available from: https://www.apexanalog.com/resources/products/pa90u.pdf (2021)
  40. Lissandrello, C. A., et al. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Scientific Reports. 10 (1), 18045 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved