A subscription to JoVE is required to view this content. Sign in or start your free trial.
The protocol presents a complete workflow for soft material nanoindentation experiments, including hydrogels and cells. First, the experimental steps to acquire force spectroscopy data are detailed; then, the analysis of such data is detailed through a newly developed open-source Python software, which is free to download from GitHub.
Nanoindentation refers to a class of experimental techniques where a micrometric force probe is used to quantify the local mechanical properties of soft biomaterials and cells. This approach has gained a central role in the fields of mechanobiology, biomaterials design and tissue engineering, to obtain a proper mechanical characterization of soft materials with a resolution comparable to the size of single cells (μm). The most popular strategy to acquire such experimental data is to employ an atomic force microscope (AFM); while this instrument offers an unprecedented resolution in force (down to pN) and space (sub-nm), its usability is often limited by its complexity that prevents routine measurements of integral indicators of mechanical properties, such as Young's Modulus (E). A new generation of nanoindenters, such as those based on optical fiber sensing technology, has recently gained popularity for its ease of integration while allowing to apply sub-nN forces with µm spatial resolution, therefore being suitable to probe local mechanical properties of hydrogels and cells.
In this protocol, a step-by-step guide detailing the experimental procedure to acquire nanoindentation data on hydrogels and cells using a commercially available ferrule-top optical fiber sensing nanoindenter is presented. Whereas some steps are specific to the instrument used herein, the proposed protocol can be taken as a guide for other nanoindentation devices, granted some steps are adapted according to the manufacturer's guidelines. Further, a new open-source Python software equipped with a user-friendly graphical user interface for the analysis of nanoindentation data is presented, which allows for screening of incorrectly acquired curves, data filtering, computation of the contact point through different numerical procedures, the conventional computation of E, as well as a more advanced analysis particularly suited for single-cell nanoindentation data.
The fundamental role of mechanics in biology is nowadays established1,2. From whole tissues to single cells, mechanical properties can inform about the pathophysiological state of the biomaterial under investigation3,4. For example, breast tissue affected by cancer is stiffer than healthy tissue, a concept that is the basis of the popular palpation test5. Notably, it has been recently shown that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is underlined by changes....
1. Preparation of substrates/cells for nanoindentation measurements
Following the protocol, a set of F-z curves is obtained. The dataset will most likely contain good curves, and curves to be discarded before continuing with the analysis. In general, curves should be discarded if their shape is different from the one shown in Figure 4A. Figure 5AI shows a dataset of ~100 curves obtained on a soft PAAm hydrogel of expected E 0.8 KPa35 uploaded in the NanoPrepare GUI. Most curves present a.......
This protocol shows how to robustly acquire force spectroscopy nanoindentation data using a commercially available ferrule-top nanoindenter on both hydrogels and single cells. In addition, instructions for the use of an open-source software programmed in Python comprising a precise workflow for the analysis of nanoindentation data are provided.
Critical steps in the protocol
The following steps have been identified to be of particular importance when following this proto.......
GC and MAGO acknowledge all members of the CeMi. MSS acknowledges support via an EPSRC Programme Grant (EP/P001114/1).
GC: software (contribution to software development and algorithms), formal analysis (analysis of nanoindentation data), validation, Investigation (nanoindentation experiments on polyacrylamide gels), data curation, writing (original draft, review and editing), visualization (figures and graphs). MAGO: investigation (preparation of gels and cells samples, nanoindentation experiments on cells), writing (original draft, review and editing), visualization (figures and graphs). ....
Name | Company | Catalog Number | Comments |
12 mm coverslips | VWR | 631-1577P | |
35 mm cell treated culture dishes | Greiner CELLSTAR | 627160 | |
Acrylamide | Sigma-Aldrich | A4058 | |
Acrylsilane | Alfa Aesar | L16400 | |
Ammonium Persulfate | Merk | 7727-54-0 | |
Bisacrylamide | Merk | 110-26-9 | |
Chiaro nanoindenter | Optics 11 Life | no catologue number | |
Ethanol | general | ||
Fetal bovine serum | Gibco | 16140071 | |
High glucose DMEM | Gibco | 11995065 | |
Isopropanol | general | ||
Kimwipe | Kimberly Clark | 21905-026 | |
Microscope glass slides | VWR | 631-1550P | |
MilliQ system | Merk Millipore | ZR0Q008WW | |
OP1550 Interferometer | Optics11 Life | no catalogue number | |
Optics 11 Life probe (k = 0.02-0.005 N/m, R = 3-3.5 um) | Optics 11 Life | no catologue number | |
Optics 11 Life probe (k = 0.46-0.5 N/m, R = 50-55 um) | Optics 11 Life | no catologue number | |
Penicillin/Streptomycin | Gibco | 15140122 | |
RainX rain repellent | RainX | 26012 | |
Standard petri dishes (90 mm) | Thermo Scientific | 101RTIRR | |
Tetramethylethylenediamine | Sigma-Aldrich | 110-18-9 | |
Vaccum dessicator | Thermo Scientific | 531-0250 | |
Software | |||
Data acquisition software (v 3.4.1) | Optics 11 Life | ||
GitHub Desktop (Optional) | Microsoft | ||
Python 3 | Python Software Foundation | ||
Visual Studio Code (Optional) | Microsoft |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved