The fabrication of microfluidic channels and their implementation in experiments for studying the chemotactic foraging behaviour of marine microbes within a patchy nutrient seascape and the swimming behaviour of bacteria within shear flow are described.
Studies of Bacterial Chemotaxis Using Microfluidics - Interview
Listeria monocytogenes is a Gram positive bacterial pathogen frequently used as a major model for the study of intracellular parasitism. Imaging late L. monocytogenes infection stages within the context of small-interfering RNA screens allows for the global study of cellular pathways required for bacterial infection of target host cells.
This manuscript uses the Fiji-based open-source software package VirusMapper to apply single-particle analysis to super-resolution microscopy images in order to generate precise models of nanoscale structure.
This paper describes a method for conducting multi-user experiments on decision-making and navigation using a networked computer laboratory.
Virtual reality (VR) experiments can be difficult to implement and require meticulous planning. This protocol describes a method for the design and implementation of VR experiments that collect physiological data from human participants. The Experiments in Virtual Environments (EVE) framework is employed to accelerate this process.
The success of a time-resolved serial femtosecond crystallography experiment is dependent on efficient sample delivery. Here, we describe protocols to optimize the extrusion of bacteriorhodopsin microcrystals from a high viscosity micro-extrusion injector. The methodology relies on sample homogenization with a novel three-way coupler and visualization with a high-speed camera.
A protocol for the generation of dynamic chemical landscapes by photolysis within microfluidic and millifluidic setups is presented. This methodology is suitable to study diverse biological processes, including the motile behavior, nutrient uptake, or adaptation to chemicals of microorganisms, both at the single cell and population level.
This report describes screening of different detergents for preparing the visual GPCR, rhodopsin, and its complex with mini-Go. Biochemical methods characterizing the quality of the complex at different stages during purification are demonstrated. This protocol can be generalized to other membrane protein complexes for their future structural studies.
Presented here is the protocol for an in situ chemotaxis assay, a recently developed microfluidic device that enables studies of microbial behavior directly in the environment.
We present a technology that uses capillarity-assisted assembly in a microfluidic platform to pattern micro-sized objects suspended in a liquid, such as bacteria and colloids, into prescribed arrays on a polydimethylsiloxane substrate.
The protocol presents a complete workflow for soft material nanoindentation experiments, including hydrogels and cells. First, the experimental steps to acquire force spectroscopy data are detailed; then, the analysis of such data is detailed through a newly developed open-source Python software, which is free to download from GitHub.
The present protocol describes a microfluidic platform to study biofilm development in quasi-2D porous media by combining high-resolution microscopy imaging with simultaneous pressure difference measurements. The platform quantifies the influence of pore size and fluid flow rates in porous media on bioclogging.
The protocol describes an advanced microfluidic platform to quantitatively measure cytokine secretion dynamics of individual human peripheral blood mononuclear cells. The platform measures up to three cytokines in parallel (IL-6, TNFα, and IL-1β) for each individual cell stimulated with lipopolysaccharide as an example.
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved