JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Imagerie biomoléculaire de l’absorption cellulaire de nanoparticules à l’aide de la microscopie optique multimodale non linéaire

Published: May 16th, 2022

DOI:

10.3791/63637

1Biomedical Physics, School of Physics and Astronomy, University of Exeter
* These authors contributed equally

Cet article présente l’intégration d’un module de focalisation spectrale et d’un laser à impulsions à double sortie, permettant une imagerie hyperspectrale rapide des nanoparticules d’or et des cellules cancéreuses. Ce travail vise à démontrer les détails des techniques optiques non linéaires multimodales sur un microscope à balayage laser standard.

Il est essentiel de sonder les nanoparticules d’or (AuNP) dans les systèmes vivants pour révéler l’interaction entre les AuNP et les tissus biologiques. De plus, en intégrant des signaux optiques non linéaires tels que la diffusion Raman stimulée (SRS), la fluorescence excitée à deux photons (TPEF) et l’absorption transitoire (TA) dans une plate-forme d’imagerie, il peut être utilisé pour révéler le contraste biomoléculaire des structures cellulaires et des AuNP de manière multimodale. Cet article présente une microscopie optique multimodale non linéaire et l’applique pour effectuer une imagerie chimiquement spécifique des AuNP dans les cellules cancéreuses. Cette plate-forme d’imagerie fournit une nouvelle approche pour développer des AuNP fonctionnalisés plus efficaces et déterminer s’ils se trouvent dans les systèmes vasculaires entourant les espaces tumoraux, péricellulaires ou cellulaires.

Les nanoparticules d’or (AuNP) ont montré un grand potentiel en tant que sondes d’imagerie biocompatibles, par exemple, en tant que substrats efficaces de spectroscopie Raman améliorée en surface (SERS) dans diverses applications biomédicales. Les principales applications comprennent des domaines tels que la biodétection, la bioimagerie, les spectroscopies améliorées en surface et la thérapie photothermique pour le traitement du cancer1. En outre, l’étude des AuNP dans les systèmes vivants est cruciale pour évaluer et comprendre l’interaction entre les AuNP et les systèmes biologiques. Il existe diverses techniques analyti....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Mise en marche du système laser

  1. Allumez le système de verrouillage et sélectionnez le laser à bras avant de démarrer le système.
  2. Allumez le PC avec le logiciel pour contrôler le laser femtoseconde à double sortie.
  3. Charger le logiciel pour le laser femtoseconde à double sortie; Ce logiciel permet d’allumer et d’éteindre le laser et contrôle directement la longueur d’onde du faisceau de pompe.
  4. Activez l’émission laser en maintenant l’icône d.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Le module SF-TRU (Spectral Focusing Timing and Recombination Unit) est introduit entre le laser femtoseconde à double sortie et le microscope à balayage laser modifié. Le système laser ultrarapide accordable utilisé dans cette étude dispose de deux ports de sortie délivrant un faisceau à une longueur d’onde fixe de 1 045 nm et l’autre faisceau accordable dans la plage de 680 à 1 300 nm. Un schéma détaillé du module SF-TRU et de la plateforme d’imagerie multimodale est illustré à la

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Cette étude a présenté la combinaison du module SF-TRU et du système laser ultrarapide à double sortie démontrée ses applications pour la microspectroscopie multimodale. Grâce à sa capacité à étudier l’absorption des nanoparticules d’or (AuNPs) par les cellules cancéreuses, la plateforme d’imagerie multimodale peut visualiser les réponses cellulaires aux traitements hyperthermiques du cancer lorsque les faisceaux laser sont absorbés par les AuNP.

De plus, une imagerie chim.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Cette recherche a été financée par des subventions EPSRC : Raman Nanotheranostics (EP/R020965/1) et CONTRAST facility (EP/S009957/1).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
APE SRS Detection UnitAPE (Angewandte Physik & Elektronik GmbH)APE Lock-in ModuleCombined system containing a large area Si photo-diode for detecting the pump beam along with a Lock-In amplifier for detecting the beam modulations
Confocal Scanning UnitOlympusFV 3000Confocal scanning unit used for imaging
CML Latex Beads, 4% w/v, 1.0 µmInvitrogenC37483Polystyrene microspheres
CoverslipsThorlabsCG15CH222 mm x 22 mm coverslips for seeding cells
FBSGibco10500-064Foetal Bovine Serum (Heat Inactivated)
FlouviewOlympusFV31S-SWLaser scanning microscope control software
Function GeneratorBX precision40543Used to generate square wave function which is fed to EOM in SF-TRU to produce modulations in the stokes beam
FV3000OlympusIX83P2ZFOther microscope frames can be used.
Gold NanoparticlesNanopartzA11-60Spherical gold nanoparticles, 60 nm diameter
Input Output InterfaceOlympusFV30 ANALOGThis unit allows voltage readouts from PMT and LockIn to be fed into the confocal scanning software and allows timing pulses to be sent between the olympus microscope and the SF-TRU unit.
InSight X3NewportSpectra-PhysicsDual-output femtosecond pulsed laser. Tunable (680–1300 nm) and fixed (1045 nm) laser outputs with the repetition rate of 80 MHz.
Microscope FrameOlympusIX83Inverted microscope
Mouse 4T1 cellsATCCCRL-2539Mouse breast cancer cells
NA 1.2 Water Immersion ObjectiveOlympusUPLSAPO60XW/IRThe multiphoton 60x Objective has a 0.28 mm working distance. Other similar objectives can be used.
NA 1.4 CondenserNikonCSC1003Other condensers with NA higher than the excitation objective can also be used.
PMTHamamatsuR3896PMT used for detecting anti-stokes photos for CARS micrsocopy
PMT ConnectorHamamatsuC13654-01-Y002Connector for PMT
Power SupplyRSRSPD-3303 CProgrammable power supply which is used for providing the correct voltage to the PMT
RPMI-1640GibcoA10491-01Roswell Park Memorial Institute (RPMI) 1640 Medium has since been found suitable for a variety of mammalian cells.
SF-TRUNewport Spectra PhysicsSF-TRUSystem designed for controlling the time delay and dispersion of the 2 laser outputs and for performing the beam modulations required for SRS

  1. Tabish, T. A., et al. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Advanced Science. 7 (15), 1903441 (2020).
  2. Tian, F., et al. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 106, 87-97 (2016).
  3. Jenkins, S. V., et al. Enhanced photothermal treatment efficacy and normal tissue protection via vascular targeted gold nanocages. Nanotheranostics. 3 (2), 145-155 (2019).
  4. Huang, J., et al. Rational design and synthesis of gammaFe2 O3 @Au magnetic gold nanoflowers for efficient cancer theranostics. Advanced Materials. 27 (34), 5049-5056 (2015).
  5. Dilipkumar, A., et al. Label-free multiphoton endomicroscopy for minimally invasive in vivo imaging. Advanced science. 6 (8), 1801735 (2019).
  6. Wang, C. -. C., et al. Differentiation of normal and cancerous lung tissues by multiphoton imaging. Journal of Biomedical Optics. 14 (4), 044034 (2009).
  7. Chrabaszcz, K., et al. Comparison of standard and HD FT-IR with multimodal CARS/TPEF/SHG/FLIMS imaging in the detection of the early stage of pulmonary metastasis of murine breast cancer. The Analyst. 145 (14), 4982-4990 (2020).
  8. Tsai, T. H., et al. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo. Journal of Dermatological Science. 65 (2), 95-101 (2012).
  9. Wang, C. -. C., et al. Early development of cutaneous cancer revealed by intravital nonlinear optical microscopy. Applied Physics Letters. 97 (11), 113702 (2010).
  10. Li, F. -. C., et al. Dorsal skin fold chamber for high resolution multiphoton imaging. Optical and Quantum Electronics. 37 (13), 1439-1445 (2005).
  11. Tong, L., et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nature Nanotechnology. 7 (1), 56-61 (2011).
  12. Chong, S., Min, W., Xie, X. S. Ground-state depletion microscopy: Detection sensitivity of single-molecule optical absorption at room temperature. The Journal of Physical Chemistry Letters. 1 (23), 3316-3322 (2010).
  13. Chen, T., et al. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells. Nanoscale. 6 (18), 10536-10539 (2014).
  14. Liu, J., Irudayaraj, J. M. Non-fluorescent quantification of single mRNA with transient absorption microscopy. Nanoscale. 8 (46), 19242-19248 (2016).
  15. Freudiger, C. W., et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 322 (5909), 1857-1861 (2008).
  16. Wang, C. -. C., et al. In situ chemically specific mapping of agrochemical seed coatings using stimulated Raman scattering microscopy. Journal of Biophotonics. 11 (11), 201800108 (2018).
  17. Wang, C. -. C., Yoong, F. -. Y., Penfield, S., Moger, J. Visualization of active ingredients uptake in seed coats with stimulated Raman scattering microscopy. Proceedings SPIE 10069, Multiphoton Microscopy the Biomedical Sciences XVII. , 1006928 (2017).
  18. Hu, F., Shi, L., Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nature Methods. 16 (9), 830-842 (2019).
  19. Zeytunyan, A., Baldacchini, T., Zadoyan, R. Module for multiphoton high-resolution hyperspectral imaging and spectroscopy. Proceedings SPIE 10498, Multiphoton Microscopy in the Biomedical Sciences XVIII. , 104980 (2018).
  20. Wang, C. -. C., Wu, R. -. J., Lin, S. -. J., Chen, Y. -. F., Dong, C. -. Y. Label-free discrimination of normal and pulmonary cancer tissues using multiphoton fluorescence ratiometric microscopy. Applied Physics Letters. 97 (4), 043706 (2010).
  21. Wang, C. -. C., Chandrappa, D., Smirnoff, N., Moger, J. Monitoring lipid accumulation in the green microalga botryococcus braunii with frequency-modulated stimulated Raman scattering. Proceedings SPIE 9329, Multiphoton Microscopy in the Biomedical Sciences XV. , 9329 (2015).
  22. Figueroa, B., et al. Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source. Biomedical Optics Express. 9 (12), 6116-6131 (2018).
  23. Cui, L., et al. In situ plasmon-enhanced CARS and TPEF for Gram staining identification of non-fluorescent bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 264, 120283 (2022).
  24. Ma, J., Sun, M. Nonlinear optical microscopies (NOMs) and plasmon-enhanced NOMs for biology and 2D materials. Nanophotonics. 9 (6), 1341-1358 (2020).
  25. Sun, L., Chen, Y., Sun, M. Exploring nonemissive excited-state intramolecular proton transfer by plasmon-enhanced hyper-Raman scattering and two-photon excitation fluorescence. The Journal of Physical Chemistry C. 126 (1), 487-492 (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved