JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Imagem Biomolecular da Captação Celular de Nanopartículas utilizando Microscopia Óptica Multimodal Não Linear

Published: May 16th, 2022

DOI:

10.3791/63637

1Biomedical Physics, School of Physics and Astronomy, University of Exeter
* These authors contributed equally

Este artigo apresenta a integração de um módulo de focalização espectral e um laser de pulso de dupla saída, permitindo imagens hiperespectrais rápidas de nanopartículas de ouro e células cancerígenas. Este trabalho tem como objetivo demonstrar os detalhes de técnicas ópticas não lineares multimodais em um microscópio de varredura a laser padrão.

Sondar nanopartículas de ouro (AuNPs) em sistemas vivos é essencial para revelar a interação entre AuNPs e tecidos biológicos. Além disso, ao integrar sinais ópticos não lineares, como espalhamento Raman estimulado (SRS), fluorescência excitada de dois fótons (TPEF) e absorção transitória (TA) em uma plataforma de imagem, ele pode ser usado para revelar o contraste biomolecular de estruturas celulares e AuNPs de maneira multimodal. Este artigo apresenta uma microscopia óptica não linear multimodal e a aplica para realizar imagens quimicamente específicas de AuNPs em células cancerígenas. Essa plataforma de imagem fornece uma nova abordagem para desenvolver AuNPs funcionalizadas mais eficientes e determinar se elas estão dentro de vasculaturas ao redor dos espaços tumoral, pericelular ou celular.

As nanopartículas de ouro (AuNPs) mostraram grande potencial como sondas de imagem biocompatíveis, por exemplo, como substratos eficazes de espectroscopia Raman aprimorada por superfície (SERS) em várias aplicações biomédicas. As principais aplicações incluem campos como biossensoriamento, bioimagem, espectroscopias aprimoradas de superfície e terapia fototérmica para o tratamento do câncer1. Além disso, sondar AuNPs em sistemas vivos é crucial para avaliar e entender a interação entre AuNPs e sistemas biológicos. Existem várias técnicas analíticas, incluindo espectroscopia de infravermelho com transformada de Fourier (FTI....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Ligar o sistema a laser

  1. Ligue o sistema de intertravamento e selecione o laser do braço antes de iniciar o sistema.
  2. Ligue o PC com o software para controlar o laser de femtossegundo de saída dupla.
  3. Carregue o software para o laser de femtossegundo de saída dupla; este software permite que o laser seja ligado e desligado e controla diretamente o comprimento de onda do feixe da bomba.
  4. Ative a emissão de laser mantendo pressionado o ícone Energia para uma cont.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

O módulo Spectral Focusing Timing and Recombination Unit (SF-TRU) é introduzido entre o laser de femtossegundo de saída dupla e o microscópio de varredura a laser modificado. O sistema de laser ultrarrápido ajustável usado neste estudo tem duas portas de saída que fornecem um feixe a um comprimento de onda fixo de 1.045 nm e o outro feixe ajustável na faixa de 680-1.300 nm. Um esquema detalhado do módulo SF-TRU e da plataforma de imagem multimodal é representado na Figura 1. O SF-T.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Este estudo apresentou a combinação do módulo SF-TRU e do sistema laser ultrarrápido de saída dupla demonstrando suas aplicações para microespectroscopia multimodal. Com sua capacidade de investigar a absorção de nanopartículas de ouro (AuNPs) por células cancerígenas, a plataforma de imagem multimodal pode visualizar as respostas celulares a tratamentos de câncer hipertérmico quando os feixes de laser são absorvidos por AuNPs.

Além disso, imagens quimicamente específicas ráp.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Esta pesquisa foi apoiada pelo EPSRC Grants: Raman Nanotheranostics (EP/R020965/1) e CONTRAST facility (EP/S009957/1).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
APE SRS Detection UnitAPE (Angewandte Physik & Elektronik GmbH)APE Lock-in ModuleCombined system containing a large area Si photo-diode for detecting the pump beam along with a Lock-In amplifier for detecting the beam modulations
Confocal Scanning UnitOlympusFV 3000Confocal scanning unit used for imaging
CML Latex Beads, 4% w/v, 1.0 µmInvitrogenC37483Polystyrene microspheres
CoverslipsThorlabsCG15CH222 mm x 22 mm coverslips for seeding cells
FBSGibco10500-064Foetal Bovine Serum (Heat Inactivated)
FlouviewOlympusFV31S-SWLaser scanning microscope control software
Function GeneratorBX precision40543Used to generate square wave function which is fed to EOM in SF-TRU to produce modulations in the stokes beam
FV3000OlympusIX83P2ZFOther microscope frames can be used.
Gold NanoparticlesNanopartzA11-60Spherical gold nanoparticles, 60 nm diameter
Input Output InterfaceOlympusFV30 ANALOGThis unit allows voltage readouts from PMT and LockIn to be fed into the confocal scanning software and allows timing pulses to be sent between the olympus microscope and the SF-TRU unit.
InSight X3NewportSpectra-PhysicsDual-output femtosecond pulsed laser. Tunable (680–1300 nm) and fixed (1045 nm) laser outputs with the repetition rate of 80 MHz.
Microscope FrameOlympusIX83Inverted microscope
Mouse 4T1 cellsATCCCRL-2539Mouse breast cancer cells
NA 1.2 Water Immersion ObjectiveOlympusUPLSAPO60XW/IRThe multiphoton 60x Objective has a 0.28 mm working distance. Other similar objectives can be used.
NA 1.4 CondenserNikonCSC1003Other condensers with NA higher than the excitation objective can also be used.
PMTHamamatsuR3896PMT used for detecting anti-stokes photos for CARS micrsocopy
PMT ConnectorHamamatsuC13654-01-Y002Connector for PMT
Power SupplyRSRSPD-3303 CProgrammable power supply which is used for providing the correct voltage to the PMT
RPMI-1640GibcoA10491-01Roswell Park Memorial Institute (RPMI) 1640 Medium has since been found suitable for a variety of mammalian cells.
SF-TRUNewport Spectra PhysicsSF-TRUSystem designed for controlling the time delay and dispersion of the 2 laser outputs and for performing the beam modulations required for SRS

  1. Tabish, T. A., et al. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Advanced Science. 7 (15), 1903441 (2020).
  2. Tian, F., et al. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 106, 87-97 (2016).
  3. Jenkins, S. V., et al. Enhanced photothermal treatment efficacy and normal tissue protection via vascular targeted gold nanocages. Nanotheranostics. 3 (2), 145-155 (2019).
  4. Huang, J., et al. Rational design and synthesis of gammaFe2 O3 @Au magnetic gold nanoflowers for efficient cancer theranostics. Advanced Materials. 27 (34), 5049-5056 (2015).
  5. Dilipkumar, A., et al. Label-free multiphoton endomicroscopy for minimally invasive in vivo imaging. Advanced science. 6 (8), 1801735 (2019).
  6. Wang, C. -. C., et al. Differentiation of normal and cancerous lung tissues by multiphoton imaging. Journal of Biomedical Optics. 14 (4), 044034 (2009).
  7. Chrabaszcz, K., et al. Comparison of standard and HD FT-IR with multimodal CARS/TPEF/SHG/FLIMS imaging in the detection of the early stage of pulmonary metastasis of murine breast cancer. The Analyst. 145 (14), 4982-4990 (2020).
  8. Tsai, T. H., et al. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo. Journal of Dermatological Science. 65 (2), 95-101 (2012).
  9. Wang, C. -. C., et al. Early development of cutaneous cancer revealed by intravital nonlinear optical microscopy. Applied Physics Letters. 97 (11), 113702 (2010).
  10. Li, F. -. C., et al. Dorsal skin fold chamber for high resolution multiphoton imaging. Optical and Quantum Electronics. 37 (13), 1439-1445 (2005).
  11. Tong, L., et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nature Nanotechnology. 7 (1), 56-61 (2011).
  12. Chong, S., Min, W., Xie, X. S. Ground-state depletion microscopy: Detection sensitivity of single-molecule optical absorption at room temperature. The Journal of Physical Chemistry Letters. 1 (23), 3316-3322 (2010).
  13. Chen, T., et al. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells. Nanoscale. 6 (18), 10536-10539 (2014).
  14. Liu, J., Irudayaraj, J. M. Non-fluorescent quantification of single mRNA with transient absorption microscopy. Nanoscale. 8 (46), 19242-19248 (2016).
  15. Freudiger, C. W., et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 322 (5909), 1857-1861 (2008).
  16. Wang, C. -. C., et al. In situ chemically specific mapping of agrochemical seed coatings using stimulated Raman scattering microscopy. Journal of Biophotonics. 11 (11), 201800108 (2018).
  17. Wang, C. -. C., Yoong, F. -. Y., Penfield, S., Moger, J. Visualization of active ingredients uptake in seed coats with stimulated Raman scattering microscopy. Proceedings SPIE 10069, Multiphoton Microscopy the Biomedical Sciences XVII. , 1006928 (2017).
  18. Hu, F., Shi, L., Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nature Methods. 16 (9), 830-842 (2019).
  19. Zeytunyan, A., Baldacchini, T., Zadoyan, R. Module for multiphoton high-resolution hyperspectral imaging and spectroscopy. Proceedings SPIE 10498, Multiphoton Microscopy in the Biomedical Sciences XVIII. , 104980 (2018).
  20. Wang, C. -. C., Wu, R. -. J., Lin, S. -. J., Chen, Y. -. F., Dong, C. -. Y. Label-free discrimination of normal and pulmonary cancer tissues using multiphoton fluorescence ratiometric microscopy. Applied Physics Letters. 97 (4), 043706 (2010).
  21. Wang, C. -. C., Chandrappa, D., Smirnoff, N., Moger, J. Monitoring lipid accumulation in the green microalga botryococcus braunii with frequency-modulated stimulated Raman scattering. Proceedings SPIE 9329, Multiphoton Microscopy in the Biomedical Sciences XV. , 9329 (2015).
  22. Figueroa, B., et al. Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source. Biomedical Optics Express. 9 (12), 6116-6131 (2018).
  23. Cui, L., et al. In situ plasmon-enhanced CARS and TPEF for Gram staining identification of non-fluorescent bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 264, 120283 (2022).
  24. Ma, J., Sun, M. Nonlinear optical microscopies (NOMs) and plasmon-enhanced NOMs for biology and 2D materials. Nanophotonics. 9 (6), 1341-1358 (2020).
  25. Sun, L., Chen, Y., Sun, M. Exploring nonemissive excited-state intramolecular proton transfer by plasmon-enhanced hyper-Raman scattering and two-photon excitation fluorescence. The Journal of Physical Chemistry C. 126 (1), 487-492 (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved