JoVE Logo

Sign In

Abstract

Engineering

Triplet Fusion Upconversion Nanocapsule Synthesis

Published: September 7th, 2022

DOI:

10.3791/64374

1Rowland Institute, Harvard University, 2Department of Electrical Engineering, Stanford University, 3Department of Chemistry, Stanford University

Abstract

Triplet fusion upconversion (UC) allows for the generation of one high energy photon from two low energy input photons. This well-studied process has significant implications for producing high energy light beyond a material's surface. However, the deployment of UC materials has been stymied due to poor material solubility, high concentration requirements, and oxygen sensitivity, ultimately resulting in reduced light output. Toward this end, nanoencapsulation has been a popular motif to circumvent these challenges, but durability has remained elusive in organic solvents. Recently, a nanoencapsulation technique was engineered to tackle each of these challenges, whereupon an oleic acid nanodroplet containing upconversion materials was encapsulated with a silica shell. Ultimately, these nanocapsules (NCs) were durable enough to enable triplet fusion upconversion-facilitated volumetric three-dimensional (3D) printing. By encapsulating upconversion materials with silica and dispersing them in a 3D printing resin, photopatterning beyond the surface of the printing vat was made possible. Here, video protocols for the synthesis of upconversion NCs are presented for both small-scale and large-scale batches. The outlined protocols serve as a starting point for adapting this encapsulation scheme to multiple upconversion schemes for use in volumetric 3D printing applications.

Explore More Videos

Keywords Triplet Fusion

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved