JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Microengineering 3D kollagenhydrogeler med langtrækkende fiberjustering

Published: September 7th, 2022

DOI:

10.3791/64457

1Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology

Denne protokol demonstrerer brugen af en mikrofluidisk kanal med skiftende geometri langs væskestrømningsretningen for at generere ekstensionel belastning (strækning) for at justere fibre i en 3D-kollagenhydrogel (<250 μm i tykkelse). Den resulterende justering strækker sig over flere millimeter og påvirkes af den ekstensionelle belastningshastighed.

Justerede kollagen I (COL1) fibre styrer tumorcellemotilitet, påvirker endotelcellemorfologi, styrer stamcelledifferentiering og er et kendetegn for hjerte- og muskuloskeletale væv. For at studere cellerespons på justerede mikromiljøer in vitro er der udviklet flere protokoller til at generere COL1-matricer med defineret fiberjustering, herunder magnetiske, mekaniske, cellebaserede og mikrofluidiske metoder. Af disse tilbyder mikrofluidiske tilgange avancerede muligheder såsom nøjagtig kontrol over væskestrømme og det cellulære mikromiljø. Imidlertid har de mikrofluidiske tilgange til generering af justerede COL1-matricer til avancerede in vitro-kulturplatforme været begrænset til tynde "måtter" (<40 μm i tykkelse) af COL1-fibre, der strækker sig over afstande mindre end 500 μm og ikke er befordrende for 3D-cellekulturapplikationer. Her præsenterer vi en protokol til fremstilling af 3D COL1-matricer (130-250 μm i tykkelse) med millimeterskalaområder med defineret fiberjustering i en mikrofluidisk enhed. Denne platform giver avancerede cellekulturfunktioner til modellering af strukturerede vævsmikromiljøer ved at give direkte adgang til den mikrokonstruerede matrix til cellekultur.

Celler befinder sig i et komplekst 3D-fibrøst netværk kaldet den ekstracellulære matrix (ECM), hvoraf hovedparten består af det strukturelle protein kollagen type I (COL1)1,2. ECM's biofysiske egenskaber giver vejledende signaler til celler, og som svar ombygger celler ECM-mikroarkitekturen 3,4,5. Disse gensidige celle-matrix-interaktioner kan give anledning til justerede COL1-fiberdomæner6, der fremmer angiogenese og celleinvasion i tumormiljøet 7,8,9

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Fremstilling af den todelte kanal og modulære platformbase

BEMÆRK: Den mikrofluidiske kanal er konstrueret ved hjælp af to dele - den mikrofluidiske kanal "udskæring", som er barberbladsskåret fra et polydimethylsiloxan (PDMS) ark med defineret tykkelse, og kanaldækslet, som reversibelt binder til udskæringen og danner kanalen. Kanalen er omgivet af en poly (methylmethacrylat) (PMMA) ramme, der fungerer som et mediereservoir (figur 1). PMM.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Når en selvsamlende COL1-opløsning strømmer gennem en kanal med faldende tværsnitsareal, øges COL1-opløsningens strømvise hastighed (v x) lokalt med en størrelsesorden ∂v x langs længden af indsnævringen mellem de to segmenter (∂x), hvilket resulterer i en ekstensionel belastningshastighed (ε̇), hvor ε̇ = ∂v x/∂x. Den ekstensive belastningshastighed kan beregnes ud fra væskehastigheden, som måles ved hjælp af partikelbilledhastighed (PIV), som vist i

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Protokoller til generering af COL1-matricer med justerede fibre er blevet beskrevet ved hjælp af magnetiske metoder, direkte anvendelse af mekanisk stamme og mikrofluidiske teknikker47. Mikrofluidiske tilgange bruges almindeligvis til at skabe mikrofysiologiske systemer på grund af deres veldefinerede strømnings- og transportegenskaber, som muliggør præcis kontrol over det biokemiske mikromiljø. Da justerede COL1-fibre giver vigtige lærerige signaler under patofysiologiske processer såsom .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Dette arbejde blev delvist støttet af National Institute of Health under tildelingsnummer R21GM143658 og af National Science Foundation under bevillingsnummer 2150798. Indholdet er udelukkende forfatternes ansvar og repræsenterer ikke nødvendigvis finansieringsorganernes officielle synspunkter.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
(3-Aminopropyl)triethoxysilane, 99% (APTES)Sigma Aldrich440140-100ML
20 Gauge IT Series Angled Dispensing TipJensen GlobalJG-20-1.0-90
3/16" dia. x 1/16" thick Nickel Plated MagnetKJ MagneticsD31
3M (TC) 12X12-6-467MPDigiKey3M9726-ND
ACETONE ACS REAGENT ≥99.5%Signa Aldrich179124-4L
BD-20AC LABORATORY CORONA TREATERElectro-Technic Products12051A
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent Grade, Alfa AesarVWRAAJ64100-09
Clear cast acrylic sheetMcMaster-Carr8560K181
Corning 100 mL Trypsin 10x, 2.5% Trypsin in HBSS [-] calcium, magnesium, phenol red, Porcine Parvovirus TestedVWR45000-666
Countess II Automated Cell CounterThermo Fisher ScientificAMQAX1000
CT-FIRE softwareLOCI - University of Wisconsin
EGM-2 Endothelial Cell Growth Medium-2 BulletKit, (CC-3156 & CC-4176), Lonza CC-3162, 500 mLLonzaCC-3162
Glutaraldehyde 50% in aqueous solution, Reagent Grade, Packaging=HDPE Bottle, Size=100 mLVWRVWRV0875-100ML
Graphtec CELITE-50GraphtecCE LITE-50
HEPES (1 M)Thermo Fisher Scientific15-630-080
High-Purity Silicone Rubber .010" Thick, 6" X 8" Sheet, 55A DurometerMcMaster-Carr87315K62
Human Umbilical Vein Endothelial cellsThermo Fisher ScientificC0035C
Invitrogen Trypan Blue Stain (0.4%)Thermo Fisher ScientificT10282
IsopropanolFisher ScientificA4154
Laser cutterFull Spectrum20x12 H-series
Microfluidics Syringe pumpNew Era Syringe PumpsNE-1002X
Microman E Single Channel Pipettor, Gilson, Model M1000EGilsonFD10006
Molecular Probes Alexa Fluor 488 PhalloidinThermo Fisher ScientificA12379
Molecular Probes Hoechst 33342, Trihydrochloride, TrihydrateThermo Fisher ScientificH3570
Nutragen Bovine Atelo CollagenAdvanced BioMatrix5010-50ML
Pbs (10x), pH 7.4VWR70011044.00
PBS pH 7.4Thermo Fisher Scientific10010049.00
Phosphate-buffered saline (PBS, 10x), with Triton X-100Alfa AesarJ63521
Replacement carrier sheet for graphtec craft ROBO CC330L-20USCUTTERGRPCARSHTN
Restek Norm-Ject Plastic Syringe 1 mL Luer SlipRestek22766.00
Silicon waferUniversity wafer452
Sodium Hydroxide, ACS, Packaging=Poly Bottle, Size=500 gVWRBDH9292-500G
Sylgard 184VWR102092-312
Thermo Scientific Pierce 20x PBS Tween 20Thermo Fisher Scientific28352.00

  1. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (24), 4195-4200 (2010).
  2. Bosman, F. T., Stamenkovic, I. Functional structure and composition of the extracellular matrix. The Journal of Pathology. 200 (4), 423-428 (2003).
  3. Cox, T. R., Erler, J. T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms. 4 (2), 165-178 (2011).
  4. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials. 31 (33), 8596-8607 (2010).
  5. Lu, P., Takai, K., Weaver, V. M., Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology. 3 (12), 005058 (2011).
  6. Piotrowski-Daspit, A. S., Nerger, B. A., Wolf, A. E., Sundaresan, S., Nelson, C. M. Dynamics of tissue-induced alignment of fibrous extracellular matrix. Biophysical Journal. 113 (3), 702-713 (2017).
  7. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 4 (1), 38 (2006).
  8. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Medicine. 6 (1), 11 (2008).
  9. Szulczewski, J. M., et al. Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia. 129, 96-109 (2021).
  10. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  11. Gruschwitz, R., et al. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices. Investigative Ophthalmology & Visual Science. 51 (12), 6303-6310 (2010).
  12. Wang, W. Y., et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioengineering. 2 (4), 046107 (2018).
  13. Wang, W. Y., Lin, D., Jarman, E. H., Polacheck, W. J., Baker, B. M. Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation. Lab on a Chip. 20 (6), 1153-1166 (2020).
  14. Lanfer, B. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 30 (30), 5950-5958 (2009).
  15. Brauer, E., et al. Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Advanced Science. 6 (9), 1801780 (2019).
  16. Ingber, D. E. From mechanobiology to developmentally inspired engineering. PhilosophicalTransactions of the Royal Society B: Biological Sciences. 373 (1759), 20170323 (2018).
  17. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G., Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal. 107 (11), 2592-2603 (2014).
  18. Reinhart-King, C. A., Dembo, M., Hammer, D. A. Cell-cell mechanical communication through compliant substrates. Biophysical Journal. 95 (12), 6044-6051 (2008).
  19. Ahadian, S., et al. Organ-on-a-chip platforms: A convergence of advanced materials, cells, and microscale technologies. Advanced Healthcare Materials. 7 (2), 1700506 (2018).
  20. Hou, X., et al. Interplay between materials and microfluidics. Nature Reviews Materials. 2 (5), 17016 (2017).
  21. Abhyankar, V. V., et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab on a Chip. 8 (9), 1507-1515 (2008).
  22. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces. PLoS One. 11 (5), 0156341 (2016).
  23. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  24. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12, 10769 (2022).
  25. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab on a Chip. 12 (12), 2156-2164 (2012).
  26. Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A., Beebe, D. J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip. 6 (3), 389-393 (2006).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Meyvantsson, I., Beebe, D. J. Cell culture models in microfluidic systems. Annual Review of Physical Chemistry. 1, 423-449 (2008).
  29. Ma, Y., et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Advanced Functional Materials. 31 (24), 2100848 (2021).
  30. Ma, Y., et al. 3D spatiotemporal mechanical microenvironment: A hydrogel-based platform for guiding stem cell fate. Advanced Materials. 30 (49), 1705911 (2018).
  31. Lee, P., Lin, R., Moon, J., Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices. 8 (1), 35-41 (2006).
  32. Del Amo, C., Borau, C., Movilla, N., Asín, J., García-Aznar, J. M. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integrative Biology. 9 (4), 339-349 (2017).
  33. Shi, N., et al. A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods. 5 (6), 2100276 (2021).
  34. Lanfer, B., et al. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials. 29 (28), 3888-3895 (2008).
  35. Saeidi, N., Sander, E. A., Ruberti, J. W. Dynamic shear-influenced collagen self-assembly. Biomaterials. 30 (34), 6581-6592 (2009).
  36. Saeidi, N., Sander, E. A., Zareian, R., Ruberti, J. W. Production of highly aligned collagen lamellae by combining shear force and thin film confinement. Acta Biomaterialia. 7 (6), 2437-2447 (2011).
  37. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  38. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  39. Mansouri, M., et al. The modular µSiM reconfigured: Integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. , (2022).
  40. Paten, J. A., et al. Flow-induced crystallization of collagen: a potentially critical mechanism in early tissue formation. ACS Nano. 10 (5), 5027-5040 (2016).
  41. Liu, Y., Eliceiri, K. W. Quantifying fibrillar collagen organization with curvelet transform-based tools. Journal of Visualized Experiments. (165), e61931 (2020).
  42. Bredfeldt, J. S., et al. Automated quantification of aligned collagen for human breast carcinoma prognosis. Journal of Pathology Informatics. 5 (1), 28 (2014).
  43. Bredfeldt, J. S., et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics. 19 (1), 016007 (2014).
  44. Carey, S. P., et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integrative Biology. 8 (8), 821-835 (2016).
  45. Carey, S. P., Kraning-Rush, C. M., Williams, R. M., Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33 (16), 4157-4165 (2012).
  46. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. AmericanJournal of Physiology-Cell Physiology. 320 (6), 1112-1124 (2021).
  47. Mohammadi, H., Janmey, P. A., McCulloch, C. A. Lateral boundary mechanosensing by adherent cells in a collagen gel system. Biomaterials. 35 (4), 1138-1149 (2014).

Tags

Tilbagetr kning

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved