JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Micro-engineering 3D collageen hydrogels met lange-afstand vezeluitlijning

Published: September 7th, 2022

DOI:

10.3791/64457

1Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology

Dit protocol demonstreert het gebruik van een microfluïdisch kanaal met veranderende geometrie langs de vloeistofstroomrichting om extensieve spanning (stretching) te genereren om vezels uit te lijnen in een 3D-collageenhydrogel (< 250 μm dik). De resulterende uitlijning strekt zich uit over enkele millimeters en wordt beïnvloed door de extensieve reksnelheid.

Uitgelijnde collageen I (COL1) vezels begeleiden de motiliteit van tumorcellen, beïnvloeden de morfologie van endotheelcellen, controleren stamceldifferentiatie en zijn een kenmerk van hart- en bewegingsweefsels. Om de celrespons op uitgelijnde micro-omgevingen in vitro te bestuderen, zijn verschillende protocollen ontwikkeld om COL1-matrices te genereren met gedefinieerde vezeluitlijning, waaronder magnetische, mechanische, celgebaseerde en microfluïdische methoden. Hiervan bieden microfluïdische benaderingen geavanceerde mogelijkheden, zoals nauwkeurige controle over vloeistofstromen en de cellulaire micro-omgeving. De microfluïdische benaderingen om uitgelijnde COL1-matrices te genereren voor geavanceerde in vitro kweekplatforms zijn echter beperkt tot dunne "matten" (<40 μm in dikte) van COL1-vezels die zich uitstrekken over afstanden van minder dan 500 μm en niet bevorderlijk zijn voor 3D-celkweektoepassingen. Hier presenteren we een protocol om 3D COL1-matrices (130-250 μm dik) te fabriceren met millimeterschaalgebieden van gedefinieerde vezeluitlijning in een microfluïdisch apparaat. Dit platform biedt geavanceerde celkweekmogelijkheden om gestructureerde weefselmicro-omgevingen te modelleren door directe toegang te bieden tot de micro-engineered matrix voor celkweek.

Cellen bevinden zich in een complex 3D-vezelig netwerk dat de extracellulaire matrix (ECM) wordt genoemd, waarvan het grootste deel bestaat uit het structurele eiwit collageen type I (COL1)1,2. De biofysische eigenschappen van de ECM geven aanwijzingen aan cellen en als reactie daarop hermodelleren cellen de ECM-microarchitectuur 3,4,5. Deze reciproke cel-matrix interacties kunnen aanleiding geven tot uitgelijnde COL1 vezeldomeinen6 die angiogenese en celinvasie in de tumo....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Fabricage van het tweedelige kanaal en de modulaire platformbasis

OPMERKING: Het microfluïdische kanaal is opgebouwd uit twee delen - de microfluïdische kanaal "uitsparing", die scheermes gesneden is uit een polydimethyl siloxaan (PDMS) plaat van gedefinieerde dikte, en de kanaalafdekking, die reversibel aan de uitsparing bindt en het kanaal vormt. Het kanaal is omgeven door een poly (methylmethacrylaat) (PMMA) frame dat zal fungeren als een mediareservoir (

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Wanneer een zelfassemblerende COL1-oplossing door een kanaal met afnemende doorsnede stroomt, neemt de stroomsgewijze snelheid (v x) van de COL1-oplossing lokaal toe met een magnitude, ∂v x, langs de lengte van de vernauwing tussen de twee segmenten (∂x), wat resulteert in een extensieve reksnelheid (ε̇) waarbij ε̇ = ∂v x/∂x. De extensieve reksnelheid kan worden berekend uit de vloeistofsnelheid, die wordt gemeten met behulp van deeltjesbeeldvelocimetrie (PIV), zoals te zien i.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Protocollen voor het genereren van COL1-matrices met uitgelijnde vezels zijn beschreven met behulp van magnetische methoden, de directe toepassing van mechanische spanning en microfluïdische technieken47. Microfluïdische benaderingen worden vaak gebruikt om microfysiologische systemen te creëren vanwege hun goed gedefinieerde stroom- en transportkenmerken, die nauwkeurige controle over de biochemische micro-omgeving mogelijk maken. Aangezien uitgelijnde COL1-vezels belangrijke instructieve sign.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Dit werk werd gedeeltelijk ondersteund door het National Institute of Health onder toekenningsnummer R21GM143658 en door de National Science Foundation onder subsidienummer 2150798. De inhoud is uitsluitend de verantwoordelijkheid van de auteurs en vertegenwoordigt niet noodzakelijkerwijs de officiële standpunten van de financieringsagentschappen.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
(3-Aminopropyl)triethoxysilane, 99% (APTES)Sigma Aldrich440140-100ML
20 Gauge IT Series Angled Dispensing TipJensen GlobalJG-20-1.0-90
3/16" dia. x 1/16" thick Nickel Plated MagnetKJ MagneticsD31
3M (TC) 12X12-6-467MPDigiKey3M9726-ND
ACETONE ACS REAGENT ≥99.5%Signa Aldrich179124-4L
BD-20AC LABORATORY CORONA TREATERElectro-Technic Products12051A
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent Grade, Alfa AesarVWRAAJ64100-09
Clear cast acrylic sheetMcMaster-Carr8560K181
Corning 100 mL Trypsin 10x, 2.5% Trypsin in HBSS [-] calcium, magnesium, phenol red, Porcine Parvovirus TestedVWR45000-666
Countess II Automated Cell CounterThermo Fisher ScientificAMQAX1000
CT-FIRE softwareLOCI - University of Wisconsin
EGM-2 Endothelial Cell Growth Medium-2 BulletKit, (CC-3156 & CC-4176), Lonza CC-3162, 500 mLLonzaCC-3162
Glutaraldehyde 50% in aqueous solution, Reagent Grade, Packaging=HDPE Bottle, Size=100 mLVWRVWRV0875-100ML
Graphtec CELITE-50GraphtecCE LITE-50
HEPES (1 M)Thermo Fisher Scientific15-630-080
High-Purity Silicone Rubber .010" Thick, 6" X 8" Sheet, 55A DurometerMcMaster-Carr87315K62
Human Umbilical Vein Endothelial cellsThermo Fisher ScientificC0035C
Invitrogen Trypan Blue Stain (0.4%)Thermo Fisher ScientificT10282
IsopropanolFisher ScientificA4154
Laser cutterFull Spectrum20x12 H-series
Microfluidics Syringe pumpNew Era Syringe PumpsNE-1002X
Microman E Single Channel Pipettor, Gilson, Model M1000EGilsonFD10006
Molecular Probes Alexa Fluor 488 PhalloidinThermo Fisher ScientificA12379
Molecular Probes Hoechst 33342, Trihydrochloride, TrihydrateThermo Fisher ScientificH3570
Nutragen Bovine Atelo CollagenAdvanced BioMatrix5010-50ML
Pbs (10x), pH 7.4VWR70011044.00
PBS pH 7.4Thermo Fisher Scientific10010049.00
Phosphate-buffered saline (PBS, 10x), with Triton X-100Alfa AesarJ63521
Replacement carrier sheet for graphtec craft ROBO CC330L-20USCUTTERGRPCARSHTN
Restek Norm-Ject Plastic Syringe 1 mL Luer SlipRestek22766.00
Silicon waferUniversity wafer452
Sodium Hydroxide, ACS, Packaging=Poly Bottle, Size=500 gVWRBDH9292-500G
Sylgard 184VWR102092-312
Thermo Scientific Pierce 20x PBS Tween 20Thermo Fisher Scientific28352.00

  1. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (24), 4195-4200 (2010).
  2. Bosman, F. T., Stamenkovic, I. Functional structure and composition of the extracellular matrix. The Journal of Pathology. 200 (4), 423-428 (2003).
  3. Cox, T. R., Erler, J. T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms. 4 (2), 165-178 (2011).
  4. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials. 31 (33), 8596-8607 (2010).
  5. Lu, P., Takai, K., Weaver, V. M., Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology. 3 (12), 005058 (2011).
  6. Piotrowski-Daspit, A. S., Nerger, B. A., Wolf, A. E., Sundaresan, S., Nelson, C. M. Dynamics of tissue-induced alignment of fibrous extracellular matrix. Biophysical Journal. 113 (3), 702-713 (2017).
  7. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 4 (1), 38 (2006).
  8. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Medicine. 6 (1), 11 (2008).
  9. Szulczewski, J. M., et al. Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia. 129, 96-109 (2021).
  10. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  11. Gruschwitz, R., et al. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices. Investigative Ophthalmology & Visual Science. 51 (12), 6303-6310 (2010).
  12. Wang, W. Y., et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioengineering. 2 (4), 046107 (2018).
  13. Wang, W. Y., Lin, D., Jarman, E. H., Polacheck, W. J., Baker, B. M. Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation. Lab on a Chip. 20 (6), 1153-1166 (2020).
  14. Lanfer, B. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 30 (30), 5950-5958 (2009).
  15. Brauer, E., et al. Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Advanced Science. 6 (9), 1801780 (2019).
  16. Ingber, D. E. From mechanobiology to developmentally inspired engineering. PhilosophicalTransactions of the Royal Society B: Biological Sciences. 373 (1759), 20170323 (2018).
  17. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G., Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal. 107 (11), 2592-2603 (2014).
  18. Reinhart-King, C. A., Dembo, M., Hammer, D. A. Cell-cell mechanical communication through compliant substrates. Biophysical Journal. 95 (12), 6044-6051 (2008).
  19. Ahadian, S., et al. Organ-on-a-chip platforms: A convergence of advanced materials, cells, and microscale technologies. Advanced Healthcare Materials. 7 (2), 1700506 (2018).
  20. Hou, X., et al. Interplay between materials and microfluidics. Nature Reviews Materials. 2 (5), 17016 (2017).
  21. Abhyankar, V. V., et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab on a Chip. 8 (9), 1507-1515 (2008).
  22. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces. PLoS One. 11 (5), 0156341 (2016).
  23. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  24. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12, 10769 (2022).
  25. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab on a Chip. 12 (12), 2156-2164 (2012).
  26. Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A., Beebe, D. J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip. 6 (3), 389-393 (2006).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Meyvantsson, I., Beebe, D. J. Cell culture models in microfluidic systems. Annual Review of Physical Chemistry. 1, 423-449 (2008).
  29. Ma, Y., et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Advanced Functional Materials. 31 (24), 2100848 (2021).
  30. Ma, Y., et al. 3D spatiotemporal mechanical microenvironment: A hydrogel-based platform for guiding stem cell fate. Advanced Materials. 30 (49), 1705911 (2018).
  31. Lee, P., Lin, R., Moon, J., Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices. 8 (1), 35-41 (2006).
  32. Del Amo, C., Borau, C., Movilla, N., Asín, J., García-Aznar, J. M. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integrative Biology. 9 (4), 339-349 (2017).
  33. Shi, N., et al. A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods. 5 (6), 2100276 (2021).
  34. Lanfer, B., et al. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials. 29 (28), 3888-3895 (2008).
  35. Saeidi, N., Sander, E. A., Ruberti, J. W. Dynamic shear-influenced collagen self-assembly. Biomaterials. 30 (34), 6581-6592 (2009).
  36. Saeidi, N., Sander, E. A., Zareian, R., Ruberti, J. W. Production of highly aligned collagen lamellae by combining shear force and thin film confinement. Acta Biomaterialia. 7 (6), 2437-2447 (2011).
  37. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  38. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  39. Mansouri, M., et al. The modular µSiM reconfigured: Integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. , (2022).
  40. Paten, J. A., et al. Flow-induced crystallization of collagen: a potentially critical mechanism in early tissue formation. ACS Nano. 10 (5), 5027-5040 (2016).
  41. Liu, Y., Eliceiri, K. W. Quantifying fibrillar collagen organization with curvelet transform-based tools. Journal of Visualized Experiments. (165), e61931 (2020).
  42. Bredfeldt, J. S., et al. Automated quantification of aligned collagen for human breast carcinoma prognosis. Journal of Pathology Informatics. 5 (1), 28 (2014).
  43. Bredfeldt, J. S., et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics. 19 (1), 016007 (2014).
  44. Carey, S. P., et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integrative Biology. 8 (8), 821-835 (2016).
  45. Carey, S. P., Kraning-Rush, C. M., Williams, R. M., Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33 (16), 4157-4165 (2012).
  46. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. AmericanJournal of Physiology-Cell Physiology. 320 (6), 1112-1124 (2021).
  47. Mohammadi, H., Janmey, P. A., McCulloch, C. A. Lateral boundary mechanosensing by adherent cells in a collagen gel system. Biomaterials. 35 (4), 1138-1149 (2014).

Tags

Intrekking

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved