This article explains how to use simulation-supervised machine learning for analyzing mitochondria morphology in fluorescence microscopy images of fixed cells.
The quantitative analysis of subcellular organelles such as mitochondria in cell fluorescence microscopy images is a demanding task because of the inherent challenges in the segmentation of these small and morphologically diverse structures. In this article, we demonstrate the use of a machine learning-aided segmentation and analysis pipeline for the quantification of mitochondrial morphology in fluorescence microscopy images of fixed cells. The deep learning-based segmentation tool is trained on simulated images and eliminates the requirement for ground truth annotations for supervised deep learning. We demonstrate the utility of this tool on fluorescence microscopy images of fixed cardiomyoblasts with a stable expression of fluorescent mitochondria markers and employ specific cell culture conditions to induce changes in the mitochondrial morphology.
In this paper, we demonstrate the utility of a physics-based machine learning tool for subcellular segmentation1 in fluorescence microscopy images of fixed cardiomyoblasts expressing fluorescent mitochondria markers.
Mitochondria are the main energy-producing organelles in mammalian cells. Specifically, mitochondria are highly dynamic organelles and are often found in networks that are constantly changing in length and branching. The shape of mitochondria impacts their function, and cells can quickly change their mitochondrial morphology to adapt to a change in the environment2. To understand this phenomenon, the morphological classification of mitochondria as dots, rods, or networks is highly informative3.
The segmentation of mitochondria is crucial for the analysis of mitochondrial morphology in cells. Current methods to segment and analyze fluorescence microscopy images of mitochondria rely on manual segmentation or conventional image processing approaches. Thresholding-based approaches such as Otsu4 are less accurate due to the high noise levels in microscopy images. Typically, images for the morphological analysis of mitochondria feature a large number of mitochondria, making manual segmentation tedious. Mathematical approaches like MorphoLibJ5 and semi-supervised machine learning approaches like Weka6 are highly demanding and require expert knowledge. A review of the image analysis techniques for mitochondria7 showed that deep learning-based techniques may be useful for the task. Indeed, image segmentation in everyday life images for applications such as self-driving has been revolutionized with the use of deep learning-based models.
Deep learning is a subset of machine learning that provides algorithms that learn from large amounts of data. Supervised deep learning algorithms learn relationships from large sets of images that are annotated with their ground truth (GT) labels. The challenges in using supervised deep learning for segmenting mitochondria in fluorescence microscopy images are two-fold. Firstly, supervised deep learning requires a large dataset of training images, and, in the case of fluorescence microscopy, providing this large dataset would be an extensive task compared to when using more easily available traditional camera-based images. Secondly, fluorescence microscopy images require GT annotations of the objects of interest in the training images, which is a tedious task that requires expert knowledge. This task can easily take hours or days of the expert's time for a single image of cells with fluorescently labeled subcellular structures. Moreover, variations between annotators pose a problem. To remove the need for manual annotation, and to be able to leverage the superior performance of deep learning techniques, a deep learning-based segmentation model was used here that was trained on simulated images. Physics-based simulators provide a way to mimic and control the process of image formation in a microscope, allowing the creation of images of known shapes. Utilizing a physics-based simulator, a large dataset of simulated fluorescence microscopy images of mitochondria was created for this purpose.
The simulation starts with the geometry generation using parametric curves for shape generation. Emitters are randomly placed on the surface of the shape in a uniformly distributed manner such that the density matches the experimental values. A 3D point spread function (PSF) of the microscope is computed using a computationally efficient approximation8 of the Gibson-Lanni model9. To closely match the simulated images with experimental images, both the dark current and the shot noise are emulated to achieve photo realism. The physical GT is generated in the form of a binary map. The code for generating the dataset and training the simulation model is available10, and the step for creating this simulated dataset is outlined in Figure 1.
We showcase the utility of deep learning-based segmentation trained entirely on a simulated dataset by analyzing confocal microscopy images of fixed cardiomyoblasts. These cardiomyoblasts expressed a fluorescent marker in the mitochondrial outer membrane, allowing for the visualization of the mitochondria in the fluorescence microscopy images. Prior to conducting the experiment given as an example here, the cells were deprived of glucose and adapted to galactose for 7 days in culture. Replacing glucose in the growth media with galactose forces the cells in culture to become more oxidative and, thus, dependent upon their mitochondria for energy production11,12. Furthermore, this renders the cells more sensitive to mitochondrial damage. Mitochondrial morphology changes can be experimentally induced by adding a mitochondrial uncoupling agent such as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to the cell culture medium13. CCCP leads to a loss of mitochondrial membrane potential (ΔΨm) and, thus, results in changes in the mitochondria from a more tubular (rod-like) to a more globular (dot-like) morphology14. In addition, mitochondria tend to swell during CCCP treatment15. We display the morphological distribution of mitochondria changes when the galactose-adapted cardiomyoblasts were treated with the mitochondrial uncoupler CCCP. The deep learning segmentations of the mitochondria enabled us to classify them as dots, rods, or networks. We then derived quantitative metrics to assess the branch lengths and abundance of the different mitochondrial phenotypes. The steps of the analysis are outlined in Figure 2, and the details of the cell culture, imaging, dataset creation for deep learning-based segmentation, as well as the quantitative analysis of the mitochondria, are given below.
NOTE: Sections 1-4 can be omitted if working with existing microscopy images of mitochondria with known experimental conditions.
1. Cell culture
2. Experimental procedure
3. Staining and mounting of the cells on the coverslips
4. Microscopy and imaging
5. Generating simulated training data
6. Deep learning-based segmentation
7. Morphological analysis: Analysis of the mitochondrial morphology of the two data groups, "Glucose" and "CCCP"
The results from the deep learning segmentations of mitochondria in confocal images of fixed cardiomyoblasts expressing fluorescent mitochondria markers showcase the utility of this method. This method is compatible with other cell types and microscopy systems, requiring only retraining.
Galactose-adapted H9c2 cardiomyoblasts with fluorescent mitochondria were treated with or without CCCP for 2 h. The cells were then fixed, stained with a nuclear dye, and mounted on glass slides for fluorescence microscopy analysis. A confocal microscope was utilized to acquire images of both the control and CCCP-treated cells. We performed our analysis on 12 confocal images, with approximately 60 cells per condition. The morphologic state of the mitochondria in each image was then determined and quantified. The segmentation masks obtained from the trained model were skeletonized to enable the analysis of the topology of each individual mitochondrion for this experiment. The branch length of the individual mitochondria was used as the parameter for classification. The individual mitochondria were classified into morphological classes by the following rule. Specifically, any mitochondrial skeleton with a length less than 1,500 nm was considered a dot, and the longer mitochondria were further categorized into network or rod. If there was at least one junction where two or more branches intersected, this was defined as a network; otherwise, the mitochondrion was classified as a rod. An example image with the mitochondrial skeletons labeled with the morphology classes is shown in Figure 3.
The mitochondrial morphology categorization in Figure 4A shows that it is possible to detect significant changes when CCCP is applied for 2 h; this is most clearly demonstrated by the increase in dots for the CCCP-treated cells.
The mean branch length in Figure 4B is another avenue for illustrating detectable and significant changes in morphology. Both rods and networks were, as expected, significantly reduced relative to control when the cells were treated with CCCP. The significant increase in the mean branch lengths of dots was also expected given the swelling that mitochondria undergo when exposed to CCCP.
Figure 1: Pipeline for the simulation of fluorescence microscopy images. The pipeline includes (i) 3D geometry generation, (ii) emitters and photokinetics emulation, (iii) 3D PSF convolution, (iv) noise addition, and (v) binarization. Please click here to view a larger version of this figure.
Figure 2: Steps of machine learning-based analysis of mitochondrial morphology. (1) The images to be segmented are first cropped into sizes acceptable for the segmentation model. (2) The deep learning-based segmentation is applied to the image crops. (3) The segmented output crops are stitched back to their original size. (4) The montaged segmentations are skeletonized. (6) Morphological analysis is conducted based on the topology from the skeletonizations. Please click here to view a larger version of this figure.
Figure 3: Mitochondrial skeleton overlayed on the segmentation output of microscopy images. (A) The segmentation output. (B) The straight-line skeleton (Euclidean distance between the start and end points of a branch) is overlayed on top of the segmentation output. The color coding of the skeleton depicts the class of mitochondria. Networks are red, rods are green, and dots are purple in color. Please click here to view a larger version of this figure.
Figure 4: Analysis of mitochondrial morphology. (A) An overview of the relative percentage of different morphological categories based on the total mitochondrial length. (B) Comparison of the mean mitochondrial branch length between the experimental conditions and between morphological categories. The x-axis displays the morphological categorizations, and the y-axis displays the mitochondria mean branch length in nanometers (nm). Statistical significance in the form of p-values is shown as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. Please click here to view a larger version of this figure.
Figure 5: Failure case of segmentation. A high density of mitochondria is a challenging scenario for the segmentation model. The colored skeleton shows the longest single mitochondria detected in the image. By going through the length measurements, these scenarios can be detected and worked on to improve the segmentation results using the morphological operator erode (slims the detected skeleton). Please click here to view a larger version of this figure.
Supplementary Files. Please click here to download the files.
We discuss precautions related to the critical steps in the protocol in the paragraphs on "geometry generation" and "simulator parameters". The paragraph titled "transfer learning" discusses modifications for higher throughput when adapting to multiple microscopes. The paragraphs on "particle analysis" and "generating other subcellular structures" refer to future applications of this method. The paragraph on the "difference from biological truth" discusses the different reasons why the simulations could differ from real data and whether these reasons impact our application. Finally, we discuss a challenging scenario for our method in the paragraph "densely packed structures".
Geometry generation
To generate the 3D geometry of mitochondria, a simple 2D structure created from b-spline curves as skeletons works well for the creation of the synthetic dataset. These synthetic shapes closely emulate the shapes of mitochondria observed in 2D cell cultures. However, in the case of 3D tissue such as heart tissue, the shape and arrangement of mitochondria are quite different. In such cases, the performance of the segmentation model may improve with the addition of directionality in the simulated images.
Simulator parameters
Caution should be exercised when setting the parameters of the simulator to ensure they match those of the data to run the inference on, as failure to do this can lead to lower performance on segmentation. One such parameter is the signal-to-noise ratio (SNR) range. The range of the SNR of the data to be tested should match the values of the simulated dataset. Additionally, the PSF used should match that of the target test data. For example, model-trained images from a confocal PSF should not be used to test images from an epi-fluorescent microscope. Another parameter to pay attention to is the use of additional magnification in the test data. If additional magnification has been used in the test data, the simulator should also be set appropriately.
Transfer learning
Transfer learning is the phenomenon of leveraging a learned model trained on one task for use in another task. This phenomenon is also applicable to our problem in relation to different types of microscope data. The weights of the segmentation model (provided with the source code) that is trained on one type of microscopy data can be used to initialize a segmentation model to be used on another kind of optical microscope data. This allows us to train on a significantly smaller subset of the training dataset (3,000 images compared to 10,000), thereby reducing the computational costs of simulation.
Particle analysis
Particle analysis can also be performed on the segmented masks. This can provide information on the area and curvature, etc., of the individual mitochondria. This information can also serve as metrics for the quantitative comparison of mitochondria (not used for this experiment). For example, at present, we define the dot morphology using a threshold based on the length of the mitochondria. It may be useful, in some cases, to incorporate ellipticity to better separate small rod-like mitochondria from puncta or dot-like mitochondria. Alternatively, if certain biological conditions cause the mitochondria to curl up, then curvature quantification may be of interest to analyze the mitochondrial population.
Generating other sub-cellular structures
The physics-based segmentation of subcellular structures has been demonstrated for mitochondria and vesicles1. Although vesicles exhibit varying shapes, their sizes are smaller, and they appear as simple spheres when observed through a fluorescence microscope. Hence, the geometry of vesicles is simulated using spherical structures of an appropriate diameter range. This implies a change in the function generates the geometry (cylinders in the case of mitochondria and spheres in the case of vesicles) of the structures and the respective parameters (step 5.4 in the protocol section). Geometrically, the endoplasmic reticulum and microtubules have also been simulated as tubular structures17. Modeling the endoplasmic reticulum with a 150 nm diameter and microtubules with an average outer diameter of 25 nm and an inner hollow tube of 15 nm in diameter provides approximations of the shapes of these structures. Another parameter that will vary for each of these sub-cellular structures is the fluorophore density. This is calculated based on the distribution of the biomolecule to which the fluorophores bind and the probability of binding.
Difference from biological ground truth
The simulated data used for the simulation-supervised training of the deep learning model differ from real data in many ways. (i) The absence of non-specific labeling in the simulated data differs from real data, as there are often free-floating fluorophores in the real data. This causes a higher average background value in the real image. This difference is mitigated by matching the SNR and setting the background value such that it matches the observed real values. (ii) The motion of subcellular structures and photokinetics are two sources of dynamics in the system. Moving structures in live cells (which move in the range of a few milliseconds) cause motion blur. The exposure time is reduced during real data acquisition to avoid the blurring effect. On the other hand, we do not simulate timelapse and assume motionless structures; this assumption is valid when the exposure time in the real data is small. However, this assumption may produce an error in the output if the exposure time of the real data is large enough to introduce motion blur. Photokinetics, on the other hand, is in the order of nanoseconds to microseconds and can be omitted in the simulation, since the usual exposure times of experiments are long enough (in the order of milliseconds) to average the effects of photokinetics. (iii) Noise in microscope images has different sources, and these sources have different probability density functions. Instead of modeling these individual sources of noise, we approximate it as a Gaussian noise over a constant background. This difference does not significantly alter the data distribution for the conditions of low signal-to-background ratio (in the range of 2-4) and when dealing with the macro density of fluorophores1. (iv) Artifacts in imaging can arise from aberrations, drift, and systematic blurs. We assume the microscope to be well aligned and that the regions chosen for analysis in the real data are devoid of these artifacts. There is also the possibility of modeling some of these artifacts in the PSF18,19,20.
Densely packed structures
The difficulties with not being able to differentiate overlapping rods from networks is a persistent problem in the segmentation of 2D microscopy data. An extremely challenging scenario is presented in Figure 5, where the mitochondria are densely packed, which leads to sub-optimal results in the segmentation model and the following analysis. Despite this challenge, using morphological operators in such situations to slim the skeletonization can help to break these overly connected networks while allowing significant changes in all the mitochondrial morphology categories to still be detected. Additionally, the use of a confocal rather than a widefield microscope for imaging is one method to partially mitigate this problem by eliminating out-of-focus light. Further, in the future, it would be useful to perform 3D segmentation to differentiate mitochondria that intersect (i.e., physically form a network) from rod-like mitochondria whose projections in a single plane overlap with each other.
Deep-learning segmentation is a promising tool that offers to expand the analysis capabilities of microscopy users, thus opening the possibility of automated analysis of complex data and large quantitative datasets, which would have previously been unmanageable.
The authors acknowledge the discussion with Arif Ahmed Sekh. Zambarlal Bhujabal is acknowledged for helping with constructing the stable H9c2 cells. We acknowledge the following funding: ERC starting grant no. 804233 (to K.A.), Researcher Project for Scientific Renewal grant no. 325741 (to D.K.P.), Northern Norway Regional Health Authority grant no. HNF1449-19 (Å.B.B.), and UiT's thematic funding project VirtualStain with Cristin Project ID 2061348 (D.K.P., Å.B.B., K.A., and A.H.).
Name | Company | Catalog Number | Comments |
12-well plate | FALCON | 353043 | |
Aqueous Glutaraldehyde EM Grade 25% | Electron Microscopy Sciences | 16200 | |
Axio Vert.A1 | Zeiss | Brightfield microscope | |
CCCP | Sigma-Aldrich | C2759 | |
Computer | n/a | n/a | Must be running Linux/Windows Operating System having an NVIDIA GPU with at least 4GB of memory |
Coverslips | VWR | 631-0150 | |
DAPI (stain) | Sigma-Aldrich | D9542 | |
DMEM | gibco | 11966-025 | |
Fetal Bovine Serum | Sigma-Aldrich | F7524 | |
Glass Slides (frosted edge) | epredia | AA00000112E01MNZ10 | |
H9c2 mCherry-EGFP-OMP25 | In-house stable cell line derived from purchased cell line | ||
Incubator | Thermo Fisher Scientific | 51033557 | |
LSM 800 | Zeiss | Confocal Microscope | |
Mounting Media (Glass) | Thermo Fisher Scientific | P36980 | |
Paraformaldehyde Solution, 4% in PBS | Thermo Fisher Scientific | J19943-K2 | |
Plan-Apochromat 63x oil (M27) objective with an NA of 1.4 | Zeiss | 420782-9900-000 | |
Sterile laminar flow hood | Labogene | SCANLAF MARS | |
Trypsin | Sigma-Aldrich | T4049 | |
Vacusafe aspiration system | VACUUBRAND | 20727400 | |
ZEN 2.6 | Zeiss |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved